No Arabic abstract
We explore non-adiabatic particle production for $N_{rm f}$ coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the $N_{rm f}=1$ and $N_{rm f}=2$ cases. We also present results for the general $N_{rm f} >2$ case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin & Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when $N_{rm f}gg 1$.
We explore non-adiabatic particle production in a de Sitter universe for a scalar spectator field, by allowing the effective mass $m^2(t)$ of this field and the cosmic time interval between non-adiabatic events to vary stochastically. Two main scenarios are considered depending on the (non-stochastic) mass $M$ of the spectator field: the conformal case with $M^2=2H^2$, and the case of a massless field. We make use of the transfer matrix formalism to parametrize the evolution of the system in terms of the occupation number, and two phases associated with the transfer matrix; these are used to construct the evolution of the spectator field. Assuming short-time interactions approximated by Dirac-delta functions, we numerically track the change of these parameters and the field in all regimes: sub- and super-horizon with weak and strong scattering. In all cases a log-normally distributed field amplitude is observed, and the logarithm of the field amplitude approximately satisfies the properties of a Wiener process outside the horizon. We derive a Fokker-Planck equation for the evolution of the transfer matrix parameters, which allows us to calculate analytically non-trivial distributions and moments in the weak-scattering limit.
We calculate the curvature power spectrum sourced by spectator fields that are excited repeatedly and non-adiabatically during inflation. In the absence of detailed information of the nature of spectator field interactions, we consider an ensemble of models with intervals between the repeated interactions and interaction strengths drawn from simple probabilistic distributions. We show that the curvature power spectra of each member of the ensemble shows rich structure with many features, and there is a large variability between different realizations of the same ensemble. Such features can be probed by the cosmic microwave background (CMB) and large scale structure observations. They can also have implications for primordial black hole formation and CMB spectral distortions. The geometric random walk behavior of the spectator field allows us to calculate the ensemble-averaged power spectrum of curvature perturbations semi-analytically. For sufficiently large stochastic sourcing, the ensemble-averaged power spectrum shows a scale dependence arising from the time spent by modes outside the horizon during the period of particle production, in spite of there being no preferred scale in the underlying model. We find that the magnitude of the ensemble-averaged power spectrum overestimates the typical power spectra in the ensemble because the ensemble distribution of the power spectra is highly non-Gaussian with fat tails.
Stochastic inflation is an effective theory describing the super-Hubble, coarse-grained, scalar fields driving inflation, by a set of Langevin equations. We previously highlighted the difficulty of deriving a theory of stochastic inflation that is invariant under field redefinitions, and the link with the ambiguity of discretisation schemes defining stochastic differential equations. In this paper, we solve the issue of these inflationary stochastic anomalies by using the Stratonovich discretisation satisfying general covariance, and identifying that the quantum nature of the fluctuating fields entails the existence of a preferred frame defining independent stochastic noises. Moreover, we derive physically equivalent It^o-Langevin equations that are manifestly covariant and well suited for numerical computations. These equations are formulated in the general context of multifield inflation with curved field space, taking into account the coupling to gravity as well as the full phase space in the Hamiltonian language, but this resolution is also relevant in simpler single-field setups. We also develop a path-integral derivation of these equations, which solves conceptual issues of the heuristic approach made at the level of the classical equations of motion, and allows in principle to compute corrections to the stochastic formalism. Using the Schwinger-Keldysh formalism, we integrate out small-scale fluctuations, derive the influence action that describes their effects on the coarse-grained fields, and show how the resulting coarse-grained effective Hamiltonian action can be interpreted to derive Langevin equations with manifestly real noises. Although the corresponding dynamics is not rigorously Markovian, we show the covariant, phase-space Fokker-Planck equation for the Probability Density Function of fields and momenta when the Markovian approximation is relevant [...]
This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semi-analytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, $xi_I gg 1$, in which the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers $k rightarrow 0$. However, the large-$xi_I$ regime is not reached until $xi_I geq {cal O} (100)$. In the intermediate regime, with $xi_I sim {cal O}(1 - 10)$, the resonance structure depends strongly on wavenumber and couplings. The resonance structure for isocurvature perturbations is distinct and more complicated than its adiabatic counterpart. An intermediate regime, for $xi_I sim {cal O} (1 - 10)$, is again evident. For large values of $xi_I$, the Floquet chart consists of densely spaced, nearly parallel instability bands, suggesting a very efficient preheating behavior. The increased efficiency arises from features of the nontrivial field-space manifold in the Einstein frame, which itself arises from the fields nonminimal couplings in the Jordan frame, and has no analogue in models with minimal couplings. Quantitatively, the approach to the large-$xi_I$ asymptotic solution for isocurvature modes is slower than in the case of the adiabatic modes.
This paper concludes our semi-analytic study of preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. Using the covariant framework of paper I in this series, we extend the rigid-spacetime results of paper II by considering both the expansion of the universe during preheating, as well as the effect of the coupled metric perturbations on particle production. The adiabatic and isocurvature perturbations are governed by different effective masses that scale differently with the nonminimal couplings and evolve differently in time. The effective mass for the adiabatic modes is dominated by contributions from the coupled metric perturbations immediately after inflation. The metric perturbations contribute an oscillating tachyonic term that enhances an early period of significant particle production for the adiabatic modes, which ceases on a time-scale governed by the nonminimal couplings $xi_I$. The effective mass of the isocurvature perturbations, on the other hand, is dominated by contributions from the fields potential and from the curvature of the field-space manifold (in the Einstein frame), the balance between which shifts on a time-scale governed by $xi_I$. As in papers I and II, we identify distinct behavior depending on whether the nonminimal couplings are small ($xi_I lesssim {cal O} (1)$), intermediate ($xi_I sim {cal O} (1 - 10)$), or large ($xi_I geq 100$).