Do you want to publish a course? Click here

A manifestly covariant theory of multifield stochastic inflation in phase space: solving the discretisation ambiguity in stochastic inflation

111   0   0.0 ( 0 )
 Added by Lucas Pinol
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stochastic inflation is an effective theory describing the super-Hubble, coarse-grained, scalar fields driving inflation, by a set of Langevin equations. We previously highlighted the difficulty of deriving a theory of stochastic inflation that is invariant under field redefinitions, and the link with the ambiguity of discretisation schemes defining stochastic differential equations. In this paper, we solve the issue of these inflationary stochastic anomalies by using the Stratonovich discretisation satisfying general covariance, and identifying that the quantum nature of the fluctuating fields entails the existence of a preferred frame defining independent stochastic noises. Moreover, we derive physically equivalent It^o-Langevin equations that are manifestly covariant and well suited for numerical computations. These equations are formulated in the general context of multifield inflation with curved field space, taking into account the coupling to gravity as well as the full phase space in the Hamiltonian language, but this resolution is also relevant in simpler single-field setups. We also develop a path-integral derivation of these equations, which solves conceptual issues of the heuristic approach made at the level of the classical equations of motion, and allows in principle to compute corrections to the stochastic formalism. Using the Schwinger-Keldysh formalism, we integrate out small-scale fluctuations, derive the influence action that describes their effects on the coarse-grained fields, and show how the resulting coarse-grained effective Hamiltonian action can be interpreted to derive Langevin equations with manifestly real noises. Although the corresponding dynamics is not rigorously Markovian, we show the covariant, phase-space Fokker-Planck equation for the Probability Density Function of fields and momenta when the Markovian approximation is relevant [...]



rate research

Read More

We study multifield inflation in scenarios where the fields are coupled non-minimally to gravity via $xi_I(phi^I)^n g^{mu u}R_{mu u}$, where $xi_I$ are coupling constants, $phi^I$ the fields driving inflation, $g_{mu u}$ the space-time metric, $R_{mu u}$ the Ricci tensor, and $n>0$. We consider the so-called $alpha$-attractor models in two formulations of gravity: in the usual metric case where $R_{mu u}=R_{mu u}(g_{mu u})$, and in the Palatini formulation where $R_{mu u}$ is an independent variable. As the main result, we show that, regardless of the underlying theory of gravity, the field-space curvature in the Einstein frame has no influence on the inflationary dynamics at the limit of large $xi_I$, and one effectively retains the single-field case. However, the gravity formulation does play an important role: in the metric case the result means that multifield models approach the single-field $alpha$-attractor limit, whereas in the Palatini case the attractor behaviour is lost also in the case of multifield inflation. We discuss what this means for distinguishing between different models of inflation.
This is the first of a three-part series of papers, in which we study the preheating phase for multifield models of inflation involving nonminimal couplings. In this paper, we study the single-field attractor behavior that these models exhibit during inflation and quantify its strength and parameter dependence. We further demonstrate that the strong single-field attractor behavior persists after the end of inflation. Preheating in such models therefore generically avoids the de-phasing that typically affects multifield models with minimally coupled fields, allowing efficient transfer of energy from the oscillating inflaton condensate(s) to coupled perturbations across large portions of parameter space. We develop a doubly-covariant formalism for studying the preheating phase in such models and identify several features specific to multifield models with nonminimal couplings, including effects that arise from the nontrivial field-space manifold. In papers II and III, we apply this formalism to study how the amplification of adiabatic and isocurvature perturbations varies with parameters, highlighting several distinct regimes depending on the magnitude of the nonminimal couplings $xi_I$.
We derive a direct correlation between the power spectrum and bispectrum of the primordial curvature perturbation in terms of the Goldstone mode based on the effective field theory approach to inflation. We show examples of correlated bispectra for the parametrized feature models presented by the Planck collaboration. We also discuss the consistency relation and the validity of our explicit correlation between the power spectrum and bispectrum.
We study tachyon inflation within the large-$N$ formalism, which takes a prescription for the small Hubble flow slow--roll parameter $epsilon_1$ as a function of the large number of $e$-folds $N$. This leads to a classification of models through their behaviour at large $N$. In addition to the perturbative $N$ class, we introduce the polynomial and exponential classes for the $epsilon_1$ parameter. With this formalism we reconstruct a large number of potentials used previously in the literature for Tachyon Inflation. We also obtain new families of potentials form the polynomial class. We characterize the realizations of Tachyon Inflation by computing the usual cosmological observables up to second order in the Hubble flow slow--roll parameters. This allows us to look at observable differences between tachyon and canonical single field inflation. The analysis of observables in light of the Planck 2015 data shows the viability of some of these models, mostly for certain realization of the polynomial and exponential classes.
We calculate the curvature power spectrum sourced by spectator fields that are excited repeatedly and non-adiabatically during inflation. In the absence of detailed information of the nature of spectator field interactions, we consider an ensemble of models with intervals between the repeated interactions and interaction strengths drawn from simple probabilistic distributions. We show that the curvature power spectra of each member of the ensemble shows rich structure with many features, and there is a large variability between different realizations of the same ensemble. Such features can be probed by the cosmic microwave background (CMB) and large scale structure observations. They can also have implications for primordial black hole formation and CMB spectral distortions. The geometric random walk behavior of the spectator field allows us to calculate the ensemble-averaged power spectrum of curvature perturbations semi-analytically. For sufficiently large stochastic sourcing, the ensemble-averaged power spectrum shows a scale dependence arising from the time spent by modes outside the horizon during the period of particle production, in spite of there being no preferred scale in the underlying model. We find that the magnitude of the ensemble-averaged power spectrum overestimates the typical power spectra in the ensemble because the ensemble distribution of the power spectra is highly non-Gaussian with fat tails.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا