Do you want to publish a course? Click here

A Second-Order Energy Stable Backward Differentiation Formula Method for the Epitaxial Thin Film Equation with Slope Selection

135   0   0.0 ( 0 )
 Added by Wenqiang Feng
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study a novel second-order energy stable Backward Differentiation Formula (BDF) finite difference scheme for the epitaxial thin film equation with slope selection (SS). One major challenge for the higher oder in time temporal discretization is how to ensure an unconditional energy stability and an efficient numerical implementation. We propose a general framework for designing the higher order in time numerical scheme with unconditional energy stability by using the BDF method with constant coefficient stabilized terms. Based on the unconditional energy stability property, we derive an $L^infty_h (0,T; H_{h}^2)$ stability for the numerical solution and provide an optimal the convergence analysis. To deal with the 4-Laplacian solver in an $L^{2}$ gradient flow at each time step, we apply an efficient preconditioned steepest descent algorithm and preconditioned nonlinear conjugate gradient algorithm to solve the corresponding nonlinear system. Various numerical simulations are present to demonstrate the stability and efficiency of the proposed schemes and slovers.



rate research

Read More

93 - Nan Jiang 2021
We present a second-order ensemble method based on a blended three-step backward differentiation formula (BDF) timestepping scheme to compute an ensemble of Navier-Stokes equations. Compared with the only existing second-order ensemble method that combines the two-step BDF timestepping scheme and a special explicit second-order Adams-Bashforth treatment of the advection term, this method is more accurate with nominal increase in computational cost. We give comprehensive stability and error analysis for the method. Numerical examples are also provided to verify theoretical results and demonstrate the improved accuracy of the method.
In this paper, we develop a provably energy stable and conservative discontinuous spectral element method for the shifted wave equation in second order form. The proposed method combines the advantages and central ideas of very successful numerical techniques, the summation-by-parts finite difference method, the spectral method and the discontinuous Galerkin method. We prove energy-stability, discrete conservation principle, and derive error estimates in the energy norm for the (1+1)-dimensions shifted wave equation in second order form. The energy-stability results, discrete conservation principle, and the error estimates generalise to multiple dimensions using tensor products of quadrilateral and hexahedral elements. Numerical experiments, in (1+1)-dimensions and (2+1)-dimensions, verify the theoretical results and demonstrate optimal convergence of $L^2$ numerical errors at subsonic, sonic and supersonic regimes.
A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1$^{+}$ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implement. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.
In this paper, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second order time-stepping for the numerical solution of the good Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, an $l_infty(0, T^*; H2)$ convergence for the solution and $l_infty(0, T^*; l_2)$ convergence for the time-derivative of the solution are obtained in this paper, instead of the $l_infty(0, T^*; l_2)$ convergence for the solution and the $l_infty(0, T^*; H^{-2})$ convergence for the time-derivative, given in [17]. In addition, the stability and convergence of this method is shown to be unconditional for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction $Delta t leq Ch^2$ reported in [17].
In this paper, two finite difference numerical schemes are proposed and analyzed for the droplet liquid film model, with a singular Leonard-Jones energy potential involved. Both first and second order accurate temporal algorithms are considered. In the first order scheme, the convex potential and the surface diffusion terms are implicitly, while the concave potential term is updated explicitly. Furthermore, we provide a theoretical justification that this numerical algorithm has a unique solution, such that the positivity is always preserved for the phase variable at a point-wise level, so that a singularity is avoided in the scheme. In fact, the singular nature of the Leonard-Jones potential term around the value of 0 prevents the numerical solution reaching such singular value, so that the positivity structure is always preserved. Moreover, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. In the second order numerical scheme, the BDF temporal stencil is applied, and an alternate convex-concave decomposition is derived, so that the concave part corresponds to a quadratic energy. In turn, the combined Leonard-Jones potential term is treated implicitly, and the concave part the is approximated by a second order Adams-Bashforth explicit extrapolation, and an artificial Douglas-Dupont regularization term is added to ensure the energy stability. The unique solvability and the positivity-preserving property for the second order scheme could be similarly established. In addition, optimal rate convergence analysis is provided for both the first and second order accurate schemes. A few numerical simulation results are also presented, which demonstrate the robustness of the numerical schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا