Do you want to publish a course? Click here

Magnetic refrigeration with paramagnetic semiconductors at cryogenic temperatures

75   0   0.0 ( 0 )
 Added by Guillaume Gervais
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose paramagnetic semiconductors as active media for refrigeration at cryogenic temperatures by adiabatic demagnetization. The paramagnetism of impurity dopants or structural defects can provide the entropy necessary for refrigeration at cryogenic temperatures. We present a simple model for the theoretical limitations to specific entropy and cooling power achievable by demagnetization of various semiconductor systems. Performance comparable to that of the hydrate (CMN) is predicted.



rate research

Read More

Schottky Barrier (SB)-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a novel device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.
Photonic and optoelectronic devices may offer the opportunity to realize efficient signal processing at speeds higher than in conventional electronic devices. Switches form the building blocks for circuits and fast photonic switches have been realized [1,2,3,4,5,6]. Recently, proof of principle of exciton optoelectronic devices was demonstrated [7,8]. Potential advantages of excitonic devices include high operation and interconnection speed, small dimensions, and the opportunity to combine many elements into integrated circuits. Here, we demonstrate experimental proof of principle for the operation of excitonic switching devices at temperatures around 100 K. The devices are based on an AlAs/GaAs coupled quantum well structure and include the exciton optoelectronic transistor (EXOT), the excitonic bridge modulator (EXBM), and the excitonic pinch-off modulator (EXPOM). This is a two orders of magnitude increase in the operation temperature compared to the earlier devices, where operation was demonstrated at 1.5 K [7,8].
147 - M. Goryca , J. Li , A. V. Stier 2019
In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial --tens of teslas or more-- due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer MoS$_2$, MoSe$_2$, MoTe$_2$, and WS$_2$ in very high magnetic fields to 91~T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the excitons $1s$ ground state but also its excited $2s$, $3s$, ..., $ns$ Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.
This paper presents observation of mechanical effects of a graphene monolayer deposited on a quartz substrate designed to operate as an extremely low-loss acoustic cavity standard at liquid-helium temperature. Resonances of this state-of-the-art cavity are used to probe the mechanical loss of the graphene film, assessed to be about $80 : 10^{-4}$ at 4K. Significant frequency shifts of positive and negative sign have been observed for many overtones of three modes of vibration. These shifts cannot be predicted by the mass-loading model widely used in the Quartz Microbalance community. Although thermo-mechanical stresses are expected in such a graphene-on-quartz composite device at low temperature due to a mismatch of expansion coefficients of both materials, it cannot fully recover the mismatch of the mass loading effect. Based on a force-frequency theory applied to the three thickness modes, to reconcile the experimental results, the mean stresses in the graphene monolayer should be of the order of 140 GPa, likely close to its tensile strength.
146 - Y. Shiomi , E. Saitoh 2014
We have demonstrated spin pumping from a paramagnetic state of an insulator La2NiMnO6 into a Pt film. Single-crystalline films of La2NiMnO6 which exhibit a ferromagnetic order at TC ~ 270 K were grown by pulsed laser deposition. The inverse spin Hall voltage induced by spin-current injection has been observed in the Pt layer not only in the ferromagnetic phase of La2NiMnO6 but also in a wide temperature range above TC. The efficient spin pumping in the paramagnetic phase is ascribable to ferromagnetic correlation, not to ferromagnetic order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا