No Arabic abstract
In the ternary system Sr-Cu-Ge, a clathrate type-I phase, Sr8Cu5.3Ge40.7 (a = 1.06311(3), exists close to the Zintl limit in a small temperature interval. Sr8Cu5.3Ge40.7 decomposes eutectoidally on cooling at 730{deg}C into (Ge), SrGe2 and tau1-SrCu2-xGe2+x. Phase equilibria at 700{deg}C have been established for the Ge rich part and are characterized by the appearance of only one ternary compound, tau1-SrCu2-xGe2+x, which crystallizes with the ThCr2Si2 structure type and forms a homogeneity range up to x=0.4 (a = 0.42850(4), c = 1.0370(1) nm). Additionally, the extent of the clathrate type-I solid solution Ba8-xSrxCuyGe46-y (5.2 < y < 5.4) has been studied at various temperatures. The clathrate type-I crystal structure (space group ) has been proven by X-ray single crystal diffraction on two single crystals with composition Sr8Cu5.3Ge40.7 (a = 1.06368(2) nm) and Ba4.9Sr3.1Cu5.3Ge40.7 (a = 1.06748(2) nm) measured at 300, 200 and 100 K. From the temperature dependency of the lattice parameters and the atomic displacement parameters, the thermal expansion coefficients, the Debye- and Einstein-temperatures and the speed of sound have been determined. From heat capacity measurements of Sr8Cu5.3Ge40.7 at low temperatures, the Sommerfeld coefficient and the Debye temperature have been extracted, whereas from a detailed analysis of these data at higher temperatures, Einstein branches of the phonon dispersion relation have been derived and compared with those obtained from the atomic displacement parameters. Electrical resistivity measurements of Sr8Cu5.3Ge40.7 reveal a rather metallic behaviour in the low temperature range (< 300 K).
Combining experiments and ab initio models we report on $rm SrPt_4Ge_{12}$ and $rm BaPt_4Ge_{12}$ as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge-atoms. Below $T_c=5.35$ K, and 5.10 K for $rm BaPt_4Ge_{12}$ and $rm SrPt_4Ge_{12}$, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-$p$ states dominate the electronic structure at the Fermi energy.
Recent experimental realizations of the topological semimetal states in several monolayer systems are very attractive because of their exotic quantum phenomena and technological applications. Based on first-principles density-functional theory calculations including spin-orbit coupling, we here explore the drastically different two-dimensional (2D) topological semimetal states in three monolayers Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn, which are isostructural with a combination of the honeycomb Cu or Fe lattice and the triangular Ge or Sn lattice. We find that (i) the nonmagnetic (NM) Cu$_{2}$Ge monolayer having a planar geometry exhibits the massive Dirac nodal lines, (ii) the ferromagentic (FM) Fe$_2$Ge monolayer having a buckled geometry exhibits the massive Weyl points, and (iii) the FM Fe$_2$Sn monolayer having a planar geometry and an out-of-plane magnetic easy axis exhibits the massless Weyl nodal lines. It is therefore revealed that mirror symmetry cannot protect the four-fold degenerate Dirac nodal lines in the NM Cu$_{2}$Ge monolayer, but preserves the doubly degenerate Weyl nodal lines in the FM Fe$_{2}$Sn monolayer. Our findings demonstrate that the interplay of crystal symmetry, magnetic easy axis, and band topology is of importance for tailoring various 2D topological states in Cu$_2$Ge, Fe$_2$Ge, and Fe$_2$Sn monlayers.
The optical conductivity spectra of the rattling phonons in the clathrate Ba$_8$Ga$_{16}$Ge$_{30}$ are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of a Ba(2)$^{2+}$ ion consists of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and the enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.
The structure and physical properties of superconducting compounds Y(La)-Ba(Sr)-Cu-O are studied, the compounds being prepared by the method of cryogenic dispersion of a charge consisting of premix oxides and carbonates. Electrical conductivity and critical current density of the superconductors are measured over a wide temperature range of 10~$mK$ to 300~$K$. Degradation of the superconductor critical parameters in time and structural characteristics, magnetic susceptibility, heat capacity and acoustic properties are studied, and current-voltage characteristics are determined.
We have successfully synthesized three quasi-2D geometrically frustrated magnetic compounds (alpha-MCr_2O_4, M=Ca, Sr, Ba) using the spark-plasma-sintering technique. All these members of the alpha-MCr_2O_4 family consist of the stacking planar triangular lattices of Cr$^{3+}$ spins (${rm S}=3/2$), separated by non-magnetic alkaline earth ions. Their corresponding magnetic susceptibility, specific heat, dielectric permittivity and ferroelectric polarization are systematically investigated. A long-range magnetic ordering arises below the N{e}el temperature (around 40K) in each member of the alpha-MCr_2O_4 family, which changes to the quasi-120degree proper-screw-type helical spin structure at low temperature. A very small but confirmed spontaneous electric polarization emerges concomitantly with this magnetic ordering. The direction of electric polarization is found within the basal triangular plane. The multiferroicity in alpha-MCr_2O_4 can not be explained within the frameworks of the magnetic exchange striction or the inverse Dzyaloshinskii-Moriya interaction. The observed results are more compatible with the newly proposed Arima mechanism that is associated the d-p hybridization between the ligand and transition metal ions, modified by the spin-orbit coupling. The evolution of multiferroic properties with the increasing inter-planar spacing (as M changes from Ca to Ba) reveals the importance of interlayer interaction in this new family of frustrated magnetic systems.