Do you want to publish a course? Click here

Spatially and time-resolved imaging of transport of indirect excitons in high magnetic fields

78   0   0.0 ( 0 )
 Added by Chelsey Dorow
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic field regime for composite bosons with magnetic fields of a few Tesla. Long lifetimes of indirect excitons allow the study kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anti-correlate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.



rate research

Read More

We present spatially- and spectrally-resolved photoluminescence measurements of indirect excitons in high magnetic fields. Long indirect exciton lifetimes give the opportunity to measure magnetoexciton transport by optical imaging. Indirect excitons formed from electrons and holes at zeroth Landau levels (0e - 0h indirect magnetoexcitons) travel over large distances and form a ring emission pattern around the excitation spot. In contrast, the spatial profiles of 1e - 1h and 2e - 2h indirect magnetoexciton emission closely follow the laser excitation profile. The 0e - 0h indirect magnetoexciton transport distance reduces with increasing magnetic field. These effects are explained in terms of magnetoexciton energy relaxation and effective mass enhancement.
We study the unitary propagation of a two-particle one-dimensional Schrodinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolution during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.
Spin transport of indirect excitons in GaAs/AlGaAs coupled quantum wells was observed by measuring the spatially resolved circular polarization of exciton emission. Exciton spin transport over several microns originates from a long spin relaxation time and long lifetime of indirect excitons.
328 - Madalina Furis 2005
In an effort to elucidate the spin (rather than charge) degrees of freedom in colloidal semiconductor nanocrystal quantum dots, we report on a series of static and time-resolved photoluminescence measurements of colloidal CdSe quantum dots in ultra-high magnetic fields up to 45 Tesla. At low temperatures (1.5 K - 40 K), the steady-state photoluminescence (PL) develops a high degree of circular polarization with applied magnetic field, indicating the presence of spin-polarized excitons. Time-resolved PL studies reveal a marked decrease in radiative exciton lifetime with increasing magnetic field and temperature. Except for an initial burst of unpolarized PL immediately following photoexcitation, high-field time-resolved PL measurements reveal a constant degree of circular polarization throughout the entire exciton lifetime, even in the presence of pronounced exciton transfer via Forster energy transfer processes.
Spatially indirect excitons with displaced wavefunctions of electrons and holes play a pivotal role in a large portfolio of fascinating physical phenomena and emerging optoelectronic applications, such as valleytronics, exciton spin Hall effect, excitonic integrated circuit and high-temperature superfluidity. Here, we uncover three types of spatially indirect excitons (including their phonon replicas) and their quantum-confined Stark effects in hexagonal boron nitride encapsulated bilayer WSe2, by performing electric field-tunable photoluminescence measurements. Because of different out-of-plane electric dipole moments, the energy order between the three types of spatially indirect excitons can be switched by a vertical electric field. Remarkably, we demonstrate, assisted by first-principles calculations, that the observed spatially indirect excitons in bilayer WSe2 are also momentum-indirect, involving electrons and holes from Q and K/{Gamma} valleys in the Brillouin zone, respectively. This is in contrast to the previously reported spatially indirect excitons with electrons and holes localized in the same valley. Furthermore, we find that the spatially indirect intervalley excitons in bilayer WSe2 can exhibit considerable, doping-sensitive circular polarization. The spatially indirect excitons with momentum-dark nature and highly tunable circular polarization open new avenues for exotic valley physics and technological innovations in photonics and optoelectronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا