Do you want to publish a course? Click here

Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

199   0   0.0 ( 0 )
 Added by Andrea Bertoni
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the unitary propagation of a two-particle one-dimensional Schrodinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolution during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.



rate research

Read More

Spatially indirect excitons with displaced wavefunctions of electrons and holes play a pivotal role in a large portfolio of fascinating physical phenomena and emerging optoelectronic applications, such as valleytronics, exciton spin Hall effect, excitonic integrated circuit and high-temperature superfluidity. Here, we uncover three types of spatially indirect excitons (including their phonon replicas) and their quantum-confined Stark effects in hexagonal boron nitride encapsulated bilayer WSe2, by performing electric field-tunable photoluminescence measurements. Because of different out-of-plane electric dipole moments, the energy order between the three types of spatially indirect excitons can be switched by a vertical electric field. Remarkably, we demonstrate, assisted by first-principles calculations, that the observed spatially indirect excitons in bilayer WSe2 are also momentum-indirect, involving electrons and holes from Q and K/{Gamma} valleys in the Brillouin zone, respectively. This is in contrast to the previously reported spatially indirect excitons with electrons and holes localized in the same valley. Furthermore, we find that the spatially indirect intervalley excitons in bilayer WSe2 can exhibit considerable, doping-sensitive circular polarization. The spatially indirect excitons with momentum-dark nature and highly tunable circular polarization open new avenues for exotic valley physics and technological innovations in photonics and optoelectronics.
Monolayers of transition metal dichalcogenides (TMDCs) feature exceptional optical properties that are dominated by excitons, tightly bound electron-hole pairs. Forming van der Waals heterostructures by deterministically stacking individual monolayers allows to tune various properties via choice of materials and relative orientation of the layers. In these structures, a new type of exciton emerges, where electron and hole are spatially separated. These interlayer excitons allow exploration of many-body quantum phenomena and are ideally suited for valleytronic applications. Mostly, a basic model of fully spatially-separated electron and hole stemming from the $K$ valleys of the monolayer Brillouin zones is applied to describe such excitons. Here, we combine photoluminescence spectroscopy and first principle calculations to expand the concept of interlayer excitons. We identify a partially charge-separated electron-hole pair in MoS$_2$/WSe$_2$ heterostructures residing at the $Gamma$ and $K$ valleys. We control the emission energy of this new type of momentum-space indirect, yet strongly-bound exciton by variation of the relative orientation of the layers. These findings represent a crucial step towards the understanding and control of excitonic effects in TMDC heterostructures and devices.
Indirect excitons (IXs) in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by a high binding energy making them stable at room temperature and giving the opportunity for exploring fundamental phenomena in excitonic systems and developing excitonic devices operational at high temperatures. We present the observation of IXs at room temperature in van der Waals TMD heterostructures based on monolayers of MoS$_2$ separated by atomically thin hexagonal boron nitride. The IXs realized in the TMD heterostructure have lifetimes orders of magnitude longer than lifetimes of direct excitons in single-layer TMD, and their energy is gate controlled.
We perform explicit time-dependent classical and quantum propagation of a spatially indirect exciton (SIX) driven by surface acoustic waves (SAWs) in a semiconductor heterostructure device. We model the SIX dynamics at different levels of description, from the Euler-Lagrange propagation of structureless classical particles to unitary Schrodinger propagation of an electron-hole wave packet in a mean field and to the full quantum propagation of the two-particle complex. A recently proposed beyond mean-field self-energy approach, adding internal virtual transitions to the c.m. dynamics, has been generalized to time-dependent potentials and turns out to describe very well full quantum calculations, while being orders of magnitude numerically less demanding. We show that SAW-driven SIXs are a sensitive probe of scattering potentials in the devices originating, for example, from single impurities or metallic gates, due to competing length and energy scales between the SAW elastic potential, the scattering potential, and the internal electron-hole dynamic of the SIX. Comparison between different approximations allow us to show that internal correlation of the electron-hole pair is crucial in scattering from shallow impurities, where tunneling plays a major role. On the other hand, scattering from broad potentials, i.e., with length scales exceeding the SIX Bohr radius, is well described as the classical dynamics of a pointlike SIX. Recent experiments are discussed in light of our calculations.
We study a capacitor made of three monolayers of transition metal dichalcogenide (TMD) separated by hexagonal Boron Nitride (hBN). We assume that the structure is symmetric with respect to the central layer plane. The symmetry includes the contacts: if the central layer is contacted by the negative electrode, both external layers are contacted by the positive one. As a result a strong enough voltage $V$ induces electron-hole dipoles (indirect excitons) pointing towards one of the external layers. Antiparallel dipoles attract each other at large distances. Thus, the dipoles alternate in the central plane forming a 2D antiferroelectric with negative binding energy per dipole. The charging of a three-layer device is a first order transition, and we show that if $V_1$ is the critical voltage required to create a single electron-hole pair and charge this capacitor by $e$, the macroscopic charge $Q_c = eSn_c$ ($S$ is the device area) enters the three-layer capacitor at a smaller critical voltage $V_{c} < V_{1}$. In other words, the differential capacitance $C(V)$ is infinite at $V = V_{c}$. We also show that in a contact-less three-layer device, where the chemically different central layer has lower conduction and valence bands, optical excitation creates indirect excitons which attract each other, and therefore form antiferroelectric exciton droplets. Thus, the indirect exciton luminescence is red shifted compared to a two-layer device.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا