Do you want to publish a course? Click here

Spatially indirect intervalley excitons in bilayer WSe2

85   0   0.0 ( 0 )
 Added by Luojun Du
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spatially indirect excitons with displaced wavefunctions of electrons and holes play a pivotal role in a large portfolio of fascinating physical phenomena and emerging optoelectronic applications, such as valleytronics, exciton spin Hall effect, excitonic integrated circuit and high-temperature superfluidity. Here, we uncover three types of spatially indirect excitons (including their phonon replicas) and their quantum-confined Stark effects in hexagonal boron nitride encapsulated bilayer WSe2, by performing electric field-tunable photoluminescence measurements. Because of different out-of-plane electric dipole moments, the energy order between the three types of spatially indirect excitons can be switched by a vertical electric field. Remarkably, we demonstrate, assisted by first-principles calculations, that the observed spatially indirect excitons in bilayer WSe2 are also momentum-indirect, involving electrons and holes from Q and K/{Gamma} valleys in the Brillouin zone, respectively. This is in contrast to the previously reported spatially indirect excitons with electrons and holes localized in the same valley. Furthermore, we find that the spatially indirect intervalley excitons in bilayer WSe2 can exhibit considerable, doping-sensitive circular polarization. The spatially indirect excitons with momentum-dark nature and highly tunable circular polarization open new avenues for exotic valley physics and technological innovations in photonics and optoelectronics.



rate research

Read More

We report the direct observation of intervalley exciton between the Q conduction valley and $Gamma$ valence valley in bilayer WSe$_2$ by photoluminescence. The Q$Gamma$ exciton lies at ~18 meV below the QK exciton and dominates the luminescence of bilayer WSe$_2$. By measuring the exciton spectra at gate-tunable electric field, we reveal different interlayer electric dipole moments and Stark shifts between Q$Gamma$ and QK excitons. Notably, we can use the electric field to switch the energy order and dominant luminescence between Q$Gamma$ and QK excitons. Both Q$Gamma$ and QK excitons exhibit pronounced phonon replicas, in which two-phonon replicas outshine the one-phonon replicas due to the existence of (nearly) resonant exciton-phonon scatterings and numerous two-phonon scattering paths. We can simulate the replica spectra by comprehensive theoretical modeling and calculations. The good agreement between theory and experiment for the Stark shifts and phonon replicas strongly supports our assignment of Q$Gamma$ and QK excitons.
We study the unitary propagation of a two-particle one-dimensional Schrodinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolution during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.
Emergent quantum phases driven by electronic interactions can manifest in materials with narrowly dispersing, i.e. flat, energy bands. Recently, flat bands have been realized in a variety of graphene-based heterostructures using the tuning parameters of twist angle, layer stacking and pressure, and resulting in correlated insulator and superconducting states. Here we report the experimental observation of similar correlated phenomena in twisted bilayer tungsten diselenide (tWSe2), a semiconducting transition metal dichalcogenide (TMD). Unlike twisted bilayer graphene where the flat band appears only within a narrow range around a magic angle, we observe correlated states over a continuum of angles, spanning 4 degree to 5.1 degree. A Mott-like insulator appears at half band filling that can be sensitively tuned with displacement field. Hall measurements supported by ab initio calculations suggest that the strength of the insulator is driven by the density of states at half filling, consistent with a 2D Hubbard model in a regime of moderate interactions. At 5.1 degree twist, we observe evidence of superconductivity upon doping away from half filling, reaching zero resistivity around 3 K. Our results establish twisted bilayer TMDs as a model system to study interaction-driven phenomena in flat bands with dynamically tunable interactions.
Spin transport of indirect excitons in GaAs/AlGaAs coupled quantum wells was observed by measuring the spatially resolved circular polarization of exciton emission. Exciton spin transport over several microns originates from a long spin relaxation time and long lifetime of indirect excitons.
We demonstrate experimental proof of principle for a stirring potential for indirect excitons. The azimuthal wavelength of this stirring potential is set by the electrode periodicity, the amplitude is controlled by the applied AC voltage, and the angular velocity is controlled by the AC frequency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا