Do you want to publish a course? Click here

Spatially Controlled Relay Beamforming: $2$-Stage Optimal Policies

123   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The problem of enhancing Quality-of-Service (QoS) in power constrained, mobile relay beamforming networks, by optimally and dynamically controlling the motion of the relaying nodes, is considered, in a dynamic channel environment. We assume a time slotted system, where the relays update their positions before the beginning of each time slot. Modeling the wireless channel as a Gaussian spatiotemporal stochastic field, we propose a novel $2$-stage stochastic programming problem formulation for optimally specifying the positions of the relays at each time slot, such that the expected QoS of the network is maximized, based on causal Channel State Information (CSI) and under a total relay transmit power budget. This results in a schema where, at each time slot, the relays, apart from optimally beamforming to the destination, also optimally, predictively decide their positions at the next time slot, based on causally accumulated experience. Exploiting either the Method of Statistical Differentials, or the multidimensional Gauss-Hermite Quadrature Rule, the stochastic program considered is shown to be approximately equivalent to a set of simple subproblems, which are solved in a distributed fashion, one at each relay. Optimality and performance of the proposed spatially controlled system are also effectively assessed, under a rigorous technical framework; strict optimality is rigorously demonstrated via the development of a version of the Fundamental Lemma of Stochastic Control, and, performance-wise, it is shown that, quite interestingly, the optimal average network QoS exhibits an increasing trend across time slots, despite our myopic problem formulation. Numerical simulations are presented, experimentally corroborating the success of the proposed approach and the validity of our theoretical predictions.



rate research

Read More

We consider stochastic motion planning in single-source single-destination robotic relay networks, under a cooperative beamforming framework. Assuming that the communication medium constitutes a spatiotemporal stochastic field, we propose a 2-stage stochastic programming formulation of the problem of specifying the positions of the relays, such that the expected reciprocal of their total beamforming power is maximized. Stochastic decision making is made on the basis of random causal CSI. Recognizing the intractability of the original problem, we propose a lower bound relaxation, resulting to a nontrivial optimization problem with respect to the relay locations, which is equivalent to a small set of simple, tractable subproblems. Our formulation results in spatial controllers with a predictive character; at each time slot, the new relay positions should be such that the expected power reciprocal at the next time slot is maximized. Quite interestingly, the optimal control policy to the relaxed problem is purely selective; under a certain sense, only the best relay should move.
In this paper, we consider the problem of joint antenna selection and analog beamformer design in downlink single-group multicast networks. Our objective is to reduce the hardware costs by minimizing the number of required phase shifters at the transmitter while fulfilling given distortion limits at the receivers. We formulate the problem as an L0 minimization problem and devise a novel branch-and-cut based algorithm to solve the resulting mixed-integer nonlinear program to optimality. We also propose a suboptimal heuristic algorithm to solve the above problem approximately with a low computational complexity. Computational results illustrate that the solutions produced by the proposed heuristic algorithm are optimal in most cases. The results also indicate that the performance of the optimal methods can be significantly improved by initializing with the result of the suboptimal method.
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely Delay-Multiply-and-Sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, Double Stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.
104 - Wuchen Li , Guido Montufar 2018
We study a natural Wasserstein gradient flow on manifolds of probability distributions with discrete sample spaces. We derive the Riemannian structure for the probability simplex from the dynamical formulation of the Wasserstein distance on a weighted graph. We pull back the geometric structure to the parameter space of any given probability model, which allows us to define a natural gradient flow there. In contrast to the natural Fisher-Rao gradient, the natural Wasserstein gradient incorporates a ground metric on sample space. We illustrate the analysis of elementary exponential family examples and demonstrate an application of the Wasserstein natural gradient to maximum likelihood estimation.
While millimeter wave (mmWave) communications promise high data rates, their sensitivity to blockage and severe signal attenuation presents challenges in their deployment in urban settings. To overcome these effects, we consider a distributed cooperative beamforming system, which relies on static relays deployed in clusters with similar channel characteristics, and where, at every time instance, only one relay from each cluster is selected to participate in beamforming to the destination. To meet the quality-of-service guarantees of the network, a key prerequisite for beamforming is relay selection. However, as the channels change with time, relay selection becomes a resource demanding task. Indeed, estimation of channel state information for all candidate relays, essential for relay selection, is a process that takes up bandwidth, wastes power and introduces latency and interference in the network. We instead propose a unique, predictive scheme for resource efficient relay selection, which exploits the special propagation patterns of the mmWave medium, and can be executed distributively across clusters, and in parallel to optimal beamforming-based communication. The proposed predictive scheme efficiently exploits spatiotemporal channel correlations with current and past networkwide Received Signal Strength (RSS), the latter being invariant to relay cluster size, measured sequentially during the operation of the system. Our numerical results confirm that our proposed relay selection strategy outperforms any randomized selection policy that does not exploit channel correlations, whereas, at the same time, it performs very close to an ideal scheme that uses complete, cluster size dependent RSS, and offers significant savings in terms of channel estimation overhead, providing substantially better network utilization, especially in dense topologies, typical in mmWave networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا