Do you want to publish a course? Click here

Double-Stage Delay Multiply and Sum Beamforming Algorithm: Application to Linear-Array Photoacoustic Imaging

82   0   0.0 ( 0 )
 Added by Moein Mozaffarzadeh
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely Delay-Multiply-and-Sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, Double Stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.

rate research

Read More

In Ultrasound (US) imaging, Delay and Sum (DAS) is the most common beamformer, but it leads to low quality images. Delay Multiply and Sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from level of sidelobes and low noise suppression. In this paper, a novel beamforming algorithm is introduced based on the expansion of DMAS formula. It is shown that there is a DAS algebra inside the expansion, and it is proposed to use DMAS instead of the DAS algebra. The introduced method, namely Double Stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in about 25% lower level of sidelobes compared to DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in Signal-to-Noise Ratio, Full-Width-Half-Maximum and Contrast Ratio, respectively, in comparison with DMAS beamformer.
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality capable of providing both high contrast and high resolution of optical and UltraSound (US) imaging. When a short duration laser pulse illuminates the tissue as a target of imaging, tissue induces US waves and detected waves can be used to reconstruct optical absorption distribution. Since receiving part of PA consists of US waves, a large number of beamforming algorithms in US imaging can be applied on PA imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in US imaging. However, make use of DAS beamformer leads to low resolution images and large scale of off-axis signals contribution. To address these problems a new paradigm namely Delay-Multiply-and-Sum (DMAS), which was used as a reconstruction algorithm in confocal microwave imaging for breast cancer detection, was introduced for US imaging. Consequently, DMAS was used in PA imaging systems and it was shown this algorithm results in resolution enhancement and sidelobe degrading. However, in presence of high level of noise the reconstructed image still suffers from high contribution of noise. In this paper, a modified version of DMAS beamforming algorithm is proposed based on DAS inside DMAS formula expansion. The quantitative and qualitative results show that proposed method results in more noise reduction and resolution enhancement in expense of contrast degrading. For the simulation, two-point target, along with lateral variation in two depths of imaging are employed and it is evaluated under high level of noise in imaging medium. Proposed algorithm in compare to DMAS, results in reduction of lateral valley for about 19 dB followed by more distinguished two-point target. Moreover, levels of sidelobe are reduced for about 25 dB.
Photoacoustic imaging (PAI), is a promising medical imaging technique that provides the high contrast of the optical imaging and the resolution of ultrasound (US) imaging. Among all the methods, Three-dimensional (3D) PAI provides a high resolution and accuracy. One of the most common algorithms for 3D PA image reconstruction is delay-and-sum (DAS). However, the quality of the reconstructed image obtained from this algorithm is not satisfying, having high level of sidelobes and a wide mainlobe. In this paper, delay-multiply-and-sum (DMAS) algorithm is suggested to overcome these limitations in 3D PAI. It is shown that DMAS algorithm is an appropriate reconstruction technique for 3D PAI and the reconstructed images using this algorithm are improved in the terms of the width of mainlobe and sidelobes, compared to DAS. Also, the quantitative results show that DMAS improves signal-to-noise ratio (SNR) and full-width-half-maximum (FWHM) for about 25 dB and 0.2 mm, respectively, compared to DAS.
In Photoacoustic imaging, Delay-and-Sum (DAS) algorithm is the most commonly used beamformer. However, it leads to a low resolution and high level of sidelobes. Delay-Multiply-and-Sum (DMAS) was introduced to provide lower sidelobes compared to DAS. In this paper, to improve the resolution and sidelobes of DMAS, a novel beamformer is introduced using Eigenspace-Based Minimum Variance (EIBMV) method combined with DMAS, namely EIBMV-DMAS. It is shown that expanding the DMAS algebra leads to several terms which can be interpreted as DAS. Using the EIBMV adaptive beamforming instead of the existing DAS (inside the DMAS algebra expansion) is proposed to improve the image quality. EIBMV-DMAS is evaluated numerically and experimentally. It is shown that EIBMV-DMAS outperforms DAS, DMAS and EIBMV in terms of resolution and sidelobes. In particular, at the depth of 11 mm of the experimental images, EIBMV-DMAS results in about 113 dB and 50 dB sidelobe reduction, compared to DMAS and EIBMV, respectively. At the depth of 7 mm, for the experimental images, the quantitative results indicate that EIBMV-DMAS leads to improvement in Signal-to-Noise Ratio (SNR) of about 75% and 34%, compared to DMAS and EIBMV, respectively.
The problem of enhancing Quality-of-Service (QoS) in power constrained, mobile relay beamforming networks, by optimally and dynamically controlling the motion of the relaying nodes, is considered, in a dynamic channel environment. We assume a time slotted system, where the relays update their positions before the beginning of each time slot. Modeling the wireless channel as a Gaussian spatiotemporal stochastic field, we propose a novel $2$-stage stochastic programming problem formulation for optimally specifying the positions of the relays at each time slot, such that the expected QoS of the network is maximized, based on causal Channel State Information (CSI) and under a total relay transmit power budget. This results in a schema where, at each time slot, the relays, apart from optimally beamforming to the destination, also optimally, predictively decide their positions at the next time slot, based on causally accumulated experience. Exploiting either the Method of Statistical Differentials, or the multidimensional Gauss-Hermite Quadrature Rule, the stochastic program considered is shown to be approximately equivalent to a set of simple subproblems, which are solved in a distributed fashion, one at each relay. Optimality and performance of the proposed spatially controlled system are also effectively assessed, under a rigorous technical framework; strict optimality is rigorously demonstrated via the development of a version of the Fundamental Lemma of Stochastic Control, and, performance-wise, it is shown that, quite interestingly, the optimal average network QoS exhibits an increasing trend across time slots, despite our myopic problem formulation. Numerical simulations are presented, experimentally corroborating the success of the proposed approach and the validity of our theoretical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا