No Arabic abstract
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. In this paper, we discuss the properties of the associated entanglement negativity and its Renyi generalizations in holographic duality. We first review the definition of the Renyi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Renyi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Renyi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.
We present a new picture of global symmetry breaking in quantum field theory and propose a novel realization of symmetry breaking phenomena in terms of the conserved charge associated with its symmetry. In particular, the fermion condensate of the vacuum state is examined when the spontaneous chiral symmetry breaking takes place. It is shown that the fermion condensate of the vacuum vanishes if the system is solved exactly, and therefore we cannot make use of the Goldstone theorem. As a perfect example, we present the Bethe ansatz vacuum of the Thirring model which shows the spontaneous chiral symmetry breaking with no fermion condensate.
We study the spontaneous Lorentz symmetry breaking in a field theoretical model in (2+1)-dimension, inspired by string theory. This model is a gauge theory of an anti-symmetric tensor field and a vector field (photon). The Nambu-Goldstone (NG) boson for the spontaneous Lorentz symmetry breaking is identified with the unphysical massless photon in the covariant quantization. We also discuss an analogue of the equivalence theorem between the amplitudes for emission or absorption of the physical massive anti-symmetric tensor field and those of the unphysical massless photon. The low-energy effective action of the NG-boson is also discussed.
Parisis formal replica-symmetry--breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a non-standard interpretation of the RSB results in which the metastate is non-trivial and is responsible for what was called non-self-averaging. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the non-standard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low temperature phase; the corresponding exponent $zeta$ takes the value $4$ according to the field theory in high dimensions $d$, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size $W$ can be observed is of order $W^{d-zeta}$. These results extend the non-standard picture quantitatively; we show that arguments against this scenario are inconclusive.
We show that in ORaifeartaigh models of spontaneous supersymmetry breaking, R-symmetries can be broken by non-zero values of fields at tree level, rather than by vacuum expectation values of pseudomoduli at loop level. As a complement of the recent result by Shih, we show that there must be a field in the theory with R-charge different from zero and two in order for R-symmetry breaking to occur, no matter whether the breaking happens at tree or loop level. We review the example by CDFM, and construct two types of tree level R-symmetry breaking models with a wide range of parameters and free of runaway problem. And the R-symmetry is broken everywhere on the pseudomoduli space in these models. This provides a rich set of candidates for SUSY model building and phenomenology.