Do you want to publish a course? Click here

Spontaneous Lorentz Symmetry Breaking by Anti-Symmetric Tensor Field

107   0   0.0 ( 0 )
 Added by Naoto Yokoi
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We study the spontaneous Lorentz symmetry breaking in a field theoretical model in (2+1)-dimension, inspired by string theory. This model is a gauge theory of an anti-symmetric tensor field and a vector field (photon). The Nambu-Goldstone (NG) boson for the spontaneous Lorentz symmetry breaking is identified with the unphysical massless photon in the covariant quantization. We also discuss an analogue of the equivalence theorem between the amplitudes for emission or absorption of the physical massive anti-symmetric tensor field and those of the unphysical massless photon. The low-energy effective action of the NG-boson is also discussed.



rate research

Read More

We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-KR sector from the Higgs-KR sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z boson of the so-called mirror matter models.
Antisymmetric tensor fields interacting with quarks and leptons have been proposed as a possible solution to the gauge hierarchy problem. We compute the one-loop beta function for a quartic self-interaction of the chiral antisymmetric tensor fields. Fluctuations of the top quark drive the corresponding running coupling to a negative value as the renormalization scale is lowered. This may indicate a non-vanishing expectation value of the tensor field, and thus a spontaneous breaking of Lorentz invariance. Settling this issue will need the inclusion of tensor loops.
We study nonlinear vacuum electrodynamics in a first-order formulation proposed by Plebanski. By applying a Dirac constraint analysis, we derive an effective Hamiltonian, together with the equations of motion. We show that there exists a large class of potentials for which the effective Hamiltonian is bounded from below, while at the same time possessing stationary points in which the field strength acquires a nonzero vacuum expectation value. The associated spontaneous breaking of Lorentz symmetry can in principle be detected by coupling the model to a suitable external current, or to gravity. We show that the possible vacua can be classified in four classes. We study some of their properties, using explicit examples for illustration.
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
We study a theory where the presence of an extra spin-two field coupled to gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In this phase gravity is massive, and the Weak Equivalence Principle is respected. The newtonian potentials are in general modified, but we identify an non-perturbative symmetry that protects them. The gravitational waves sector has a rich phenomenology: sources emit a combination of massless and massive gravitons that propagate with distinct velocities and also oscillate. Since their velocities differ from the speed of light, the time of flight difference between gravitons and photons from a common source could be measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا