Do you want to publish a course? Click here

Re-Interpretation of Spontaneous Symmetry Breaking in Quantum Field Theory and Goldstone Theorem

56   0   0.0 ( 0 )
 Added by Takahashi Hidenori
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We present a new picture of global symmetry breaking in quantum field theory and propose a novel realization of symmetry breaking phenomena in terms of the conserved charge associated with its symmetry. In particular, the fermion condensate of the vacuum state is examined when the spontaneous chiral symmetry breaking takes place. It is shown that the fermion condensate of the vacuum vanishes if the system is solved exactly, and therefore we cannot make use of the Goldstone theorem. As a perfect example, we present the Bethe ansatz vacuum of the Thirring model which shows the spontaneous chiral symmetry breaking with no fermion condensate.



rate research

Read More

In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl current, $K_mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEVs of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
110 - Zheng Sun 2011
We show that in ORaifeartaigh models of spontaneous supersymmetry breaking, R-symmetries can be broken by non-zero values of fields at tree level, rather than by vacuum expectation values of pseudomoduli at loop level. As a complement of the recent result by Shih, we show that there must be a field in the theory with R-charge different from zero and two in order for R-symmetry breaking to occur, no matter whether the breaking happens at tree or loop level. We review the example by CDFM, and construct two types of tree level R-symmetry breaking models with a wide range of parameters and free of runaway problem. And the R-symmetry is broken everywhere on the pseudomoduli space in these models. This provides a rich set of candidates for SUSY model building and phenomenology.
We consider some aspects of spontaneous breaking of Lorentz Invariance in field theories, discussing the possibility that the certain tensor operators may condensate in the ground state in which case the tensor Goldstone particles would appear. We analyze their dynamics and discuss to which extent such a theory could imitate the gravity. We are also interested if the universality of coupling of such `gravitons with other particles can be achieved in the infrared limit. Then we address the more complicated models when such tensor Goldstones coexist with the usual geometrical gravitons. At the end we examine the properties of possible cosmological scenarios in the case of goldstone gravity coexisting with geometrical gravity.
145 - Marc Gillioz 2017
A formulation of $mathcal{N} = 2$ supersymmetric Yang-Mills theory with a spacetime-dependent gauge coupling allows to study the breaking of conformal symmetry at the quantum level. The theory has an energy-momentum tensor that is only conserved if an equation of motion for the coupling is imposed. It admits non-trivial solitons, among which the Wu-Yang monopole that can be regularized and turns out to be massless. On the other hand, the ordinary BPS monopole is only a solution in the large $N_c$ limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا