No Arabic abstract
Graded metasurfaces exploit the local momentum imparted by an impedance gradient to transform the impinging wavefront. This approach suffers from fundamental limits on the overall conversion efficiency and it is challenged by fabrication limitations on the maximum spatial resolution. Here, we introduce the concept of meta-gratings, which enables arbitrary wavefront engineering with unitary efficiency and significantly lower demands on the fabrication precision. We employ this concept to design reflective metasurfaces for wavefront steering without limitations on efficiency. A similar approach is envisioned for transmitted beams and for arbitrary wavefront transformation, opening promising opportunities for highly-efficient metasurfaces for extreme wave manipulation.
We introduce chiral gradient metasurfaces that allow perfect transmission of all the incident wave into a desired direction and simultaneous perfect rotation of the polarization of the refracted wave with respect to the incident one. Besides using gradient polarization densities which provide bending of the refracted wave with respect to the incident one, using metasurface inclusions that are chiral allows the polarization of the refracted wave to be rotated. We suggest a possible realization of the proposed device by discretizing the required equivalent surface polarization densities realized by proper helical inclusions at each discretization point. By only using a single optically thin layer of chiral inclusions, we are able to unprecedentedly deflect a normal incident plane wave to a refracted plane wave at $45^{circ}$ with $72%$ power efficiency which is accompanied by a $90^{circ}$ polarization rotation. The proposed concepts and design method may find practical applications in polarization rotation devices at microwaves as well as in optics, especially when the incident power is required to be deflected.
Inhomogeneous metasurfaces have shown possibilities for unprecedented control of wave propagation and scattering. While it is conventional to shine a single incident plane wave from one side of these metastructures, illuminating by several waves simultaneously from both sides may enhance possibilities to control scattered waves, which results in additional functionalities and novel applications. Here, we unveil how using coherent plane-wave illumination of a properly designed inhomogeneous metasurface sheet it is possible to realize controllable retroreflection. We call these metasurfaces as coherent retroreflectors and explain the method for realizing them both in theory and practice. We show that coherent retroreflectors can be used for filtering undesired modes and creation of field-localization regions in waveguides. The latter application is in resemblance to bound states in the radiation continuum.
Many new possibilities to observe and use novel physical effects are discovered at so called exceptional points (EPs). This is done by using parity-time (PT) -symmetric non-Hermitian systems and balancing gains and losses. When combined with EP-physics, recently, metasurfaces have shown greater abilities for wave manipulation than conventional metasurface systems. However, the solving process for EPs usually requires the transfer matrix method (TMM) or a parametric sweep, which are both complex and time-consuming. In this Letter, we develop a simple theoretical model, which is based on acoustic equivalent-circuit theory and can find the analytic solutions for EPs directly. As a proof of concept, PT-symmetric acoustic metasurfaces are studied to test the theoretical model, which enables unidirectional antireflection effects at EPs. In addition, finite element method (FEM) simulations are performed to study these EP solutions using the theoretical model for different mediums, wavelengths, angles of incidence, and gain-loss ratios. Our work offers a simple and powerful theoretical tool for designing PT-symmetric metasurfaces at EPs and may also be used for other classical wave systems.
This paper proposes a novel technique for the design of miniaturized waveguide filters based on locally resonant metamaterials (LRMs). We implement ultra-small metamaterial filters (Meta-filters) by exploiting a subwavelength (sub-lambda guiding mechanism in evanescent hollow waveguides, which are loaded by small resonators. In particular, we use composite pin-pipe waveguides (CPPWs) built from a hollow metallic pipe loaded by a set of resonant pins, which are spaced by deep subwavelength distances. We demonstrate that in such structures, multiple resonant scattering nucleates a sub-lambda mode with a customizable bandwidth below the induced hybridization bandgap (HBG) of the LRM. The sub-lambda guided mode and the HBG, respectively, induce pass- and rejection- bands in a finite-length CPPW, creating a filter whose main properties are largely decoupled from the specific arrangement of the resonant inclusions. To guarantee compatibility with existing technologies, we propose a unique subwavelength method to match the small CPPW filters to standard waveguide interfaces, which we call a meta-port. Finally, we build and test a family of low- and high-order ultra-compact aluminum CPPW filters in the Ku-band (10-18GHz). Our measurements demonstrate the customizability of the bandwidth and the robustness of the passband against geometrical scaling. The 3D-printed prototypes, which are one order of magnitude smaller and lighter than traditional filters and are also compatible with standard waveguide interfaces, may find applications in future satellite systems and 5G infrastructures.
Metasurfaces provide the disruptive technology enabling miniaturization of complex cascades of optical elements on a plane. We leverage the benefits of such a surface to develop a planar integrated photonic beam collimator for on-chip optofluidic sensing applications. While most of the current work focuses on miniaturizing the optical detection hardware, little attention is given to develop on-chip hardware for optical excitation. In this manuscript, we propose a flat metasurface for beam collimation in optofluidic applications. We implement an inverse design approach to optimize the metasurface using gradient descent method and experimentally compare its characteristics with conventional binary grating-based photonic beam diffractors. The proposed metasurface can enhance the illumination efficiency almost two times in on-chip applications such as fluorescence imaging, Raman and IR spectroscopy and can enable multiplexing of light sources for high throughput biosensing.