Do you want to publish a course? Click here

Proof of Concept of Wireless TERS Monitoring

40   0   0.0 ( 0 )
 Added by James Brusey
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Temporary earth retaining structures (TERS) help prevent collapse during construction excavation. To ensure that these structures are operating within design specifications, load forces on supports must be monitored. Current monitoring approaches are expensive, sparse, off-line, and thus difficult to integrate into predictive models. This work aims to show that wirelessly connected battery powered sensors are feasible, practical, and have similar accuracy to existing sensor systems. We present the design and validation of ReStructure, an end-to-end prototype wireless sensor network for collection, communication, and aggregation of strain data. ReStructure was validated through a six months deployment on a real-life excavation site with all but one node producing valid and accurate strain measurements at higher frequency than existing ones. These results and the lessons learnt provide the basis for future widespread wireless TERS monitoring that increase measurement density and integrate closely with predictive models to provide timely alerts of damage or potential failure.



rate research

Read More

133 - Huy Nguyen , Gabriel Scalosub , 2013
Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.
A new class of sensing paradigm known as lab-onskin where stretchable and flexible smart sensor devices are integrated into the skin, provides direct monitoring and diagnostic interfaces to the body. Distributed lab-on-skin wireless sensors have the ability to provide continuous long term assessment of the skin health. This paper proposes a distributed skin health monitoring system using a wireless body area network. The system is responsive to the dynamic changes in the skin health, and remotely reports on the same. The proposed algorithm detects the abnormal skin and creates an energy efficient data aggregation tree covering the affected area while putting the unnecessary sensors to sleep mode. The algorithm responds to the changing conditions of the skin by dynamically adapting the size and shape of the monitoring trees to that of the abnormal skin areas thus providing a comprehensive monitoring. Simulation results demonstrate the application and utility of the proposed algorithm for changing wound shapes and sizes.
Under the advocacy of the international community, more and more research topics have been built around the ocean. This paper proposed an implementation scheme of marine wireless sensor network monitoring system based on LoRa and MQTT. Different from the traditional network architecture, the system was constructed by combining with two network forms, and according to their respective characteristics, the overall design followed the transition from LoRa to MQTT. We first used LoRa to interconnect the sensor nodes with the gateway, and on this basis, the collected data was sent to the server visualization platform through MQTT, the backend management server would continuously refresh the monitoring page. At the same time, the client could use a browser-based web application to directly access and call data for global maritime information monitoring. In the future, we will further improve the system and optimize the algorithm, to achieve more dimensions and deeper exploration of the underwater world.
In this document, we prove the convergence of the model proposed in [1], which aims at estimating the LoRaWAN network performance in a single-gateway scenario. First, we provide an analytical proof of the existence of a fixed point solution for such a system. Then, we report experimental results, showing that the system of the two inter-dependent equations provided by the model can be solved through fixed-point iterations, and that a limited number of iterations is enough to reach convergence.
Motion imaging phantoms are expensive, bulky and difficult to transport and set-up. The purpose of this paper is to demonstrate a simple approach to the design of multi-modality motion imaging phantoms that use mechanically stored energy to produce motion. We propose two phantom designs that use mainsprings and elastic bands to store energy. A rectangular piece was attached to an axle at the end of the transmission chain of each phantom, and underwent a rotary motion upon release of the mechanical motor. The phantoms were imaged with MRI and US, and the image sequences were embedded in a 1D non linear manifold (Laplacian Eigenmap) and the spectrogram of the embedding was used to derive the angular velocity over time. The derived velocities were consistent and reproducible within a small error. The proposed motion phantom concept showed great potential for the construction of simple and affordable motion phantoms
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا