Do you want to publish a course? Click here

Mechanically Powered Motion Imaging Phantoms: Proof of Concept

206   0   0.0 ( 0 )
 Added by Alberto Gomez
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Motion imaging phantoms are expensive, bulky and difficult to transport and set-up. The purpose of this paper is to demonstrate a simple approach to the design of multi-modality motion imaging phantoms that use mechanically stored energy to produce motion. We propose two phantom designs that use mainsprings and elastic bands to store energy. A rectangular piece was attached to an axle at the end of the transmission chain of each phantom, and underwent a rotary motion upon release of the mechanical motor. The phantoms were imaged with MRI and US, and the image sequences were embedded in a 1D non linear manifold (Laplacian Eigenmap) and the spectrogram of the embedding was used to derive the angular velocity over time. The derived velocities were consistent and reproducible within a small error. The proposed motion phantom concept showed great potential for the construction of simple and affordable motion phantoms



rate research

Read More

164 - Tao Feng 2020
It has been shown that with the use of ultra-wideband (UWB) electromagnetic signal and time of arrival (ToA) principle, it is possible to locate medical implants given the permittivity distribution of the body. We propose a new imaging modality using the reverse process to acquire permittivity distributions as a surrogate of human anatomy. In the proposed systems, the locations of the signal source, receiver, and signal shapes are assumed to be known exactly. The measured data is recorded as the time it takes for the signal to travel from the signal source to the signal receiver. The finite-difference-time-domain (FDTD) method is used for the modeling of signal propagation within the phantom, which is used for both simulation and image reconstruction. Image reconstruction is achieved using linear regression on the training pairs, which includes randomly generated images and its corresponding arrival times generated using the FDTD approach. The linear weights of the training images are generated to minimize the difference between the arrival time of the reconstruction image and the measured arrival time. A simulation study using UWB signal with the central frequency of 300 MHz and the Shepp-Logan phantom was carried out. Ten-picosecond timing resolution is used for the simulation and image reconstruction. The quantitative difference between the arrival times of the phantom and the reconstructed image reduced with an increased iteration number. The quantitative error of the reconstructed image reached below 10% after 900 iterations, and 8.4% after 1200 iterations. With additional post-smoothing to suppress the introduced noise pattern through reconstruction, 6.5% error was achieved. In this paper, an approach that utilizes the ToA principle to achieve transmission imaging with radio waves is proposed and validated using a simulation study.
Purpose: Whole-heart MRA techniques typically target pre-determined motion states and address cardiac and respiratory dynamics independently. We propose a novel fast reconstruction algorithm, applicable to ungated free-running sequences, that leverages inherent similarities in the acquired data to avoid such physiological constraints. Theory and Methods: The proposed SIMilarity-Based Angiography (SIMBA) method clusters the continuously acquired k-space data in order to find a motion-consistent subset that can be reconstructed into a motion-suppressed whole-heart MRA. Free-running 3D radial datasets from six ferumoxytol-enhanced scans of pediatric cardiac patients and twelve non-contrast scans of healthy volunteers were reconstructed with a non-motion-suppressed regridding of all the acquired data (All Data), our proposed SIMBA method, and a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium interface sharpness, contrast ratio, and visibility of coronary artery ostia. Results: Both the fast SIMBA reconstruction (~20s) and the FRF provided significantly higher blood-myocardium sharpness than All Data (P<0.001). No significant difference was observed among the former two. Significantly higher blood-myocardium contrast ratio was obtained with SIMBA compared to All Data and FRF (P<0.01). More coronary ostia could be visualized with both SIMBA and FRF than with All Data (All Data: 4/36, SIMBA: 30/36, FRF: 33/36, both P<0.001) but no significant difference was found between the first two. Conclusion: The combination of free-running sequences and the fast SIMBA reconstruction, which operates without a priori assumptions related to physiological motion, forms a simple workflow for obtaining whole-heart MRA with sharp anatomical structures.
Medical imaging is widely used in cancer diagnosis and treatment, and artificial intelligence (AI) has achieved tremendous success in various tasks of medical image analysis. This paper reviews AI-based tumor subregion analysis in medical imaging. We summarize the latest AI-based methods for tumor subregion analysis and their applications. Specifically, we categorize the AI-based methods by training strategy: supervised and unsupervised. A detailed review of each category is presented, highlighting important contributions and achievements. Specific challenges and potential AI applications in tumor subregion analysis are discussed.
67 - Guang Yang , Jun Lv , Yutong Chen 2021
Magnetic Resonance Imaging (MRI) is a vital component of medical imaging. When compared to other image modalities, it has advantages such as the absence of radiation, superior soft tissue contrast, and complementary multiple sequence information. However, one drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities, limiting its usage in some clinical applications when imaging time is critical. Traditional compressive sensing based MRI (CS-MRI) reconstruction can speed up MRI acquisition, but suffers from a long iterative process and noise-induced artefacts. Recently, Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images from heavily undersampled k-space data, allowing for much faster MRI scanning. However, there are still some hurdles to tackle. For example, directly training DNNs based on L1/L2 distance to the target fully sampled images could result in blurry reconstruction because L1/L2 loss can only enforce overall image or patch similarity and does not take into account local information such as anatomical sharpness. It is also hard to preserve fine image details while maintaining a natural appearance. More recently, Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality. The encoder obtains a latent space for the undersampling image, and the image is reconstructed by the decoder using the GAN loss. In this chapter, we review the GAN powered fast MRI methods with a comparative study on various anatomical datasets to demonstrate the generalisability and robustness of this kind of fast MRI while providing future perspectives.
Magnetic resonance imaging (MRI) acquisition, reconstruction, and segmentation are usually processed independently in the conventional practice of MRI workflow. It is easy to notice that there are significant relevances among these tasks and this procedure artificially cuts off these potential connections, which may lead to losing clinically important information for the final diagnosis. To involve these potential relations for further performance improvement, a sequential multi-task joint learning network model is proposed to train a combined end-to-end pipeline in a differentiable way, aiming at exploring the mutual influence among those tasks simultaneously. Our design consists of three cascaded modules: 1) deep sampling pattern learning module optimizes the $k$-space sampling pattern with predetermined sampling rate; 2) deep reconstruction module is dedicated to reconstructing MR images from the undersampled data using the learned sampling pattern; 3) deep segmentation module encodes MR images reconstructed from the previous module to segment the interested tissues. The proposed model retrieves the latently interactive and cyclic relations among those tasks, from which each task will be mutually beneficial. The proposed framework is verified on MRB dataset, which achieves superior performance on other SOTA methods in terms of both reconstruction and segmentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا