Do you want to publish a course? Click here

Long-range big quantum-data transmission

55   0   0.0 ( 0 )
 Added by Michael Zwerger
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce an alternative type of quantum repeater for long-range quantum communication with improved scaling with the distance. We show that by employing hashing, a deterministic entanglement distillation protocol with one-way communication, one obtains a scalable scheme that allows one to reach arbitrary distances, with constant overhead in resources per repeater station, and ultrahigh rates. In practical terms, we show that also with moderate resources of a few hundred qubits at each repeater station, one can reach intercontinental distances. At the same time, a measurement-based implementation allows one to tolerate high loss, but also operational and memory errors of the order of several percent per qubit. This opens the way for long-distance communication of big quantum data.



rate research

Read More

We describe a phase transition for long-range entanglement in a three-dimensional cluster state affected by noise. The partially decohered state is modeled by the thermal state of a suitable Hamiltonian. We find that the temperature at which the entanglement length changes from infinite to finite is nonzero. We give an upper and lower bound to this transition temperature.
The recent observation of the dynamical Casimir effect in a modulated superconducting waveguide, coronating thirty years of world-wide research, empowered the quantum technology community with a powerful tool to create entangled photons on-chip. In this work we show how, going beyond the single waveguide paradigm using a scalable array, it is possible to create multipartite nonclassical states, with the possibility to control the long-range quantum correlations of the emitted photons. In particular, our finite-temperature theory shows how maximally entangled $NOON$ states can be engineered in a realistic setup. The results here presented open the way to new kinds of quantum fluids of light, arising from modulated vacuum fluctuations in linear systems.
140 - Michael Kastner 2011
The approach to equilibrium is studied for long-range quantum Ising models where the interaction strength decays like r^{-alpha} at large distances r with an exponent $alpha$ not exceeding the lattice dimension. For a large class of observables and initial states, the time evolution of expectation values can be calculated. We prove analytically that, at a given instant of time t and for sufficiently large system size N, the expectation value of some observable <A>(t) will practically be unchanged from its initial value <A>(0). This finding implies that, for large enough N, equilibration effectively occurs on a time scale beyond the experimentally accessible one and will not be observed in practice.
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issue by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power-law with distance $propto r^{-alpha}$, $alpha>0$. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for $alpha>2$; weakly long-range for $1<alpha<2$ without a clear light cone but with a finite propagation speed of almost all excitations; and fully non-local for $alpha<1$ with instantaneous transmission of correlations. This last regime breaks generalized Lieb--Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasi-particles remains valid, allowing an intuitive interpretation of our findings via divergences of quasi-particle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
Time crystals correspond to a phase of matter where time-translational symmetry (TTS) is broken. Up to date, they are well studied in open quantum systems, where external drive allows to break discrete TTS, ultimately leading to Floquet time crystals. At the same time, genuine time crystals for closed quantum systems are believed to be impossible. In this study we propose a form of a Hamiltonian for which the unitary dynamics exhibits the time crystalline behavior and breaks continuous TTS. This is based on spin-1/2 many-body Hamiltonian which has long-range multispin interactions in the form of spin strings, thus bypassing previously known no-go theorems. We show that quantum time crystals are stable to local perturbations at zero temperature. Finally, we reveal the intrinsic connection between continuous and discrete TTS, thus linking the two realms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا