Do you want to publish a course? Click here

Water-based and Biocompatible 2D Crystal Inks: from Ink Formulation to All- Inkjet Printed Heterostructures

126   0   0.0 ( 0 )
 Added by Cinzia Casiraghi Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fully exploiting the properties of 2D crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate, including plastic. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, available inkjet printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive formulation processing. In addition, none of those formulations are suitable for thin-film heterostructure fabrication due to the re-mixing of different 2D crystals, giving rise to uncontrolled interfaces, which results in poor device performance and lack of reproducibility. In this work we show a general formulation engineering approach to achieve highly concentrated, and inkjet printable water-based 2D crystal formulations, which also provides optimal film formation for multi-stack fabrication. We show examples of all-inkjet printed heterostructures, such as large area arrays of photosensors on plastic and paper and programmable logic memory devices, fully exploiting the design flexibility of inkjet printing. Finally, dose-escalation cytotoxicity assays in vitro also confirm the inks biocompatible character, revealing the possibility of extending use of such 2D crystal formulations to drug delivery and biomedical applications.



rate research

Read More

We present an investigation of inkjet printed strain gauges based on two-dimensional (2D) materials. The technology leverages water-based and biocompatible inks to fabricate strain measurement devices on flexible substrates such as paper. We demonstrate that the device performance and sensitivity are strongly dependent on the printing parameter (i.e., drop- spacing, number of printing passes, etc.). We show that values of the Gauge Factor up to 125 can be obtained, with large sensitivity (>20%) even when small strains (0.3%) are applied. Furthermore, we provide preliminary examples of heterostructure-based strain sensors, enabled by the inkjet printing technology.
138 - F. Withers , H. Yang , L. Britnell 2014
The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one stack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in the device fabrication.
A well-defined insulating layer is of primary importance in the fabrication of passive (e.g. capacitors) and active (e.g. transistors) components in integrated circuits. One of the most widely known 2-Dimensional (2D) dielectric materials is hexagonal boron nitride (hBN). Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, non-contact approach, which also allows for device design flexibility, produces no material wastage and offers compatibility with almost any surface of interest, including flexible substrates. In this work we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 pm 0.3 nF cm^(-2) for a dielectric thickness of sim 3 mu m and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 pm 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 pm 0.3 MV cm^(-1). Fully printed capacitors with sub-/mu m hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.
Manufacturing electronic devices by printing techniques with low temperature sintering of nano-size material particles can revolutionize the electronics industry in coming years. The impact of this change to the industry can be significant enabling low-cost products and flexibility in manufacturing. implementation of a new production technology with new materials requires thorough elementary knowledge creation. It should be noticed that although some of first electronic devices ideally can be manufactured by printing, at the present several modules are in fact manufactured by using hybrid techniques (for instance photolithography, vapor depositions, spraying, etc...).
We report the exfoliation of graphite in aqueous solutions under high shear rate [$sim10^8s^{-1}$] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below$sim2Omega/square$. This is a simple and scalable production route for graphene-based conductive inks for large area printing in flexible electronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا