Do you want to publish a course? Click here

Multislip Friction with a Single Ion

65   0   0.0 ( 0 )
 Added by Ian Counts
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A trapped ion transported along a periodic potential is studied as a paradigmatic nanocontact frictional interface. The combination of the periodic corrugation potential and a harmonic trapping potential creates a one-dimensional energy landscape with multiple local minima, corresponding to multistable stick-slip friction. We measure the probabilities of slipping to the various minima for various corrugations and transport velocities. The observed probabilities show that the multislip regime can be reached dynamically at smaller corrugations than would be possible statically, and can be described by an equilibrium Boltzmann model. While a clear microscopic signature of multislip behavior is observed for the ion motion, the frictional force and dissipation are only weakly affected by the transition to multistable potentials.



rate research

Read More

We present a new single-ion endcap trap for high precision spectroscopy that has been designed to minimize ion-environment interactions. We describe the design in detail and then characterize the working trap using a single trapped 171 Yb ion. Excess micromotion has been eliminated to the resolution of the detection method and the trap exhibits an anomalous phonon heating rate of d<n> /dt = 24 +30/-24 per second. The thermal properties of the trap structure have also been measured with an effective temperature rise at the ions position of 0.14 +/- 0.14 K. The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the 10^-18 level.
A transportable optical clock refer to the $4s^2S_{1/2}-3d^2D_{5/2}$ electric quadrupole transition at 729 nm of single $^{40}Ca^+$ trapped in mini Paul trap has been developed. The physical system of $^{40}Ca^+$ optical clock is re-engineered from a bulky and complex setup to an integration of two subsystems: a compact single ion unit including ion trapping and detection modules, and a compact laser unit including laser sources, beam distributor and frequency reference modules. Apart from the electronics, the whole equipment has been constructed within a volume of 0.54 $m^3$. The systematic fractional uncertainty has been evaluated to be $7.7times 10^{-17}$, and the Allan deviation fits to be $2.3times {10}^{-14}/sqrt{tau}$ by clock self-comparison with a probe pulse time 20 ms.
We describe a high-resolution spectroscopy method, in which the detection of single excitation events is enhanced by a complete loss of coherence of a superposition of two ground states. Thereby, transitions of a single isolated atom nearly at rest are recorded efficiently with high signal-to-noise ratios. Spectra display symmetric line shapes without stray-light background from spectroscopy probes. We employ this method on a $^{25}$Mg$^+$ ion to measure one, two, and three-photon transition frequencies from the 3S ground state to the 3P, 3D, and 4P excited states, respectively. Our results are relevant for astrophysics and searches for drifts of fundamental constants. Furthermore, the method can be extended to other transitions, isotopes, and species. The currently achieved fractional frequency uncertainty of $5 times 10^{-9}$ is not limited by the method.
We compute the Rydberg spectrum of a single Ca$^+$ ion in a Paul trap by incorporating various internal and external coupling terms of the ion to the trap in the Hamiltonian. The coupling terms include spin-orbit coupling in Ca$^+$, charge (electron and ionic core) coupling to the radio frequency and static fields, ion-electron coupling in the Paul trap, and ion center-of-mass coupling. The electronic Rydberg states are precisely described by a one-electron model potential for e$^-$+Ca$^{2+}$, and accurate eigenenergies, quantum defect parameters, and static and tensor polarizabilities for a number of excited Rydberg states are obtained. The time-periodic rf Hamiltonian is expanded in the Floquet basis, and the trapping-field-broadened Rydberg lines are compared with recent observations of Ca$^+(23P)$ and Ca$^+(52F)$ Rydberg lines.
We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. Holtkemeier et al., Phys. Rev. Lett. 116, 233003 (2016)]. By transforming the collisional processes into a frame, where the ions micromotion is assigned to the buffer gas atoms, our model allows one to investigate the influence of non-homogeneous buffer gas configurations as well as higher multipole orders of the radio-frequency trap in great detail. Depending on the neutral-to-ion mass ratio, three regimes of sympathetic cooling are identified which are characterized by the form of the ions energy distribution in equilibrium. We provide analytic expressions and numerical simulations of the ions energy distribution, spatial profile and cooling rates for these different regimes. Based on these findings, a method for actively decreasing the ions energy by reducing the spatial expansion of the buffer gas arises (Forced Sympathetic Cooling).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا