No Arabic abstract
A transportable optical clock refer to the $4s^2S_{1/2}-3d^2D_{5/2}$ electric quadrupole transition at 729 nm of single $^{40}Ca^+$ trapped in mini Paul trap has been developed. The physical system of $^{40}Ca^+$ optical clock is re-engineered from a bulky and complex setup to an integration of two subsystems: a compact single ion unit including ion trapping and detection modules, and a compact laser unit including laser sources, beam distributor and frequency reference modules. Apart from the electronics, the whole equipment has been constructed within a volume of 0.54 $m^3$. The systematic fractional uncertainty has been evaluated to be $7.7times 10^{-17}$, and the Allan deviation fits to be $2.3times {10}^{-14}/sqrt{tau}$ by clock self-comparison with a probe pulse time 20 ms.
We present a transportable optical clock (TOC) with $^{87}$Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of ${7.4 times 10^{-17}}$ which is currently limited by the statistics of the determination of the residual lattice light shift. The measurements confirm that the systematic uncertainty is reduceable to below the design goal of $1 times 10^{-17}$. The instability of our TOC is $1.3 times 10^{-15}/sqrt{(tau/s)}$. Both, the systematic uncertainty and the instability are to our best knowledge currently the best achieved with any type of transportable clock. For autonomous operation the TOC is installed in an air-conditioned car-trailer. It is suitable for chronometric leveling with sub-meter resolution as well as intercontinental cross-linking of optical clocks, which is essential for a redefiniton of the SI second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and it is a first step to space borne optical clocks
We experimentally investigate an optical frequency standard based on the $^2S_{1/2} (F=0)to {}^2F_{7/2} (F=3)$ electric octupole (textit{E}3) transition of a single trapped $^{171}$Yb$^+$ ion. For the spectroscopy of this strongly forbidden transition, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these shifts is controlled by interleaved single-pulse Rabi spectroscopy which reduces the related relative frequency uncertainty to $1.1times 10^{-18}$. To determine the frequency shift due to thermal radiation emitted by the ions environment, we measure the static scalar differential polarizability of the textit{E}3 transition as $0.888(16)times 10^{-40}$ J m$^2$/V$^2$ and a dynamic correction $eta(300~text{K})=-0.0015(7)$. This reduces the uncertainty due to thermal radiation to $1.8times 10^{-18}$. The residual motion of the ion yields the largest contribution $(2.1times 10^{-18})$ to the total systematic relative uncertainty of the clock of $3.2times 10^{-18}$.
We present a measurement of the absolute frequency of the 5s$^2$ $^1$S$_0$ to 5s5p $^3$P$_0$ transition in $^{87}$Sr, which is a secondary representation of the SI second. We describe the optical lattice clock apparatus used for the measurement, and we focus in detail on how its systematic frequency shifts are evaluated with a total fractional uncertainty of $1 times 10^{-17}$. Traceability to the International System of Units is provided via comparison to International Atomic Time (TAI). Gathering data over 5- and 15-day periods, with the lattice clock operating on average 74$%$ of the time, we measure the frequency of the transition to be 429228004229873.1(5) Hz, which corresponds to a fractional uncertainty of $1 times 10^{-15}$. We describe in detail how this uncertainty arises from the intermediate steps linking the optical frequency standard, through our local time scale UTC(NPL), to an ensemble of primary and secondary frequency standards which steer TAI. The calculated absolute frequency of the transition is in good agreement with recent measurements carried out in other laboratories around the world.
The advent of novel measurement instrumentation can lead to paradigm shifts in scientific research. Optical atomic clocks, due to their unprecedented stability and uncertainty, are already being used to test physical theories and herald a revision of the International System of units (SI). However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy, a major challenge remains. This is their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations. Here we report the first field measurement campaign performed with a ubiquitously applicable $^{87}$Sr optical lattice clock. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km apart, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a $^{171}$Yb lattice clock also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.
We report on a transportable optical clock, based on laser-cooled strontium atoms trapped in an optical lattice. The experimental apparatus is composed of a compact source of ultra-cold strontium atoms including a compact cooling laser set-up and a transportable ultra-stable laser for interrogating the optical clock transition. The whole setup (excluding electronics) fits within a volume of less than 2 m$^3$. The high degree of operation reliability of both systems allowed the spectroscopy of the clock transition to be performed with 10 Hz resolution. We estimate an uncertainty of the clock of $7times10^{-15}$.