Do you want to publish a course? Click here

Constraint on the light quark mass $m_q$ from QCD Sum Rules in the $I=0$ scalar channel

92   0   0.0 ( 0 )
 Added by Zhufeng Zhang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we reanalyze the $I=0$ scalar channel with the improved Monte-Carlo based QCD sum rules, which combines the rigorous Holder-inequality-determined sum rule window and a two Breit-Wigner type resonances parametrization for the phenomenological spectral density that satisfies the the low-energy theorem for the scalar form factor. Considering the uncertainties of the QCD parameters and the experimental masses and widths of the scalar resonances $sigma$ and $f_0(980)$, we obtain a prediction for light quark mass $m_q(2,textrm{GeV})$ = $frac{1}{2}(m_u(2,textrm{GeV})$ + $m_d(2,textrm{GeV}))$ = $4.7^{+0.8}_{-0.7},textrm{MeV}$, which is consistent with the PDG (Particle Data Group) value and QCD sum rule determinations in the pseudoscalar channel. This agreement provides a consistent framework connecting QCD sum rules and low-energy hadronic physics. We also obtain the decay constants of $sigma$ and $f_0(980)$ at 2 GeV, which are approximately $0.64-0.83$ GeV and $0.40-0.48$ GeV respectively.



rate research

Read More

The light quark masses are determined using a new QCD Finite Energy Sum Rule (FESR) in the pseudoscalar channel. This FESR involves an integration kernel designed to reduce considerably the contribution of the (unmeasured) hadronic resonance spectral functions. The QCD sector of the FESR includes perturbative QCD (PQCD) to five loop order, and the leading non-perturbative terms. In the hadronic sector the dominant contribution is from the pseudoscalar meson pole. Using Contour Improved Perturbation Theory (CIPT) the results for the quark masses at a scale of 2 GeV are $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 {MeV}$, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4 {MeV}$, and $m_s(Q= 2 {GeV}) = 102 pm 8 {MeV}$, for $Lambda = 381 pm 16 {MeV}$, corresponding to $alpha_s(M_tau^2) = 0.344 pm0.009$. In this framework the systematic uncertainty in the quark masses from the unmeasured hadronic resonance spectral function amounts to less than 2 - 3 %. The remaining uncertainties above arise from those in $Lambda$, the unknown six-loop PQCD contribution, and the gluon condensate, which are all potentially subject to improvement.
We calculate the coefficients of the dimension-8 quark and gluon condensates in the current-current correlator of $1^{-+}$ light hybrid current $gbar{q}(x)gamma_{ u}iG_{mu u}(x)q{(x)}$. With inclusion of these higher-power corrections and updating the input parameters, we re-analyze the mass of the $1^{-+}$ light hybrid meson from Monte-Carlo based QCD sum rules. Considering the possible violation of factorization of higher dimensional condensates and variation of $langle g^3G^3rangle$, we obtain a conservative mass range 1.72--2.60,GeV, which favors $pi_{1}(2015)$ as a better hybrid candidate compared with $pi_{1}(1600)$ and $pi_{1}(1400)$.
159 - Adrian Signer 2008
We present an analysis to determine the charm quark mass from non-relativistic sum rules, using a combined approach taking into account fixed-order and effective-theory calculations. Non-perturbative corrections as well as higher-order perturbative corrections are under control. For the PS mass we find m_{PS}(0.7 GeV) = 1.50pm 0.04 GeV, which translates into a MS-bar mass of m = 1.25pm 0.04 GeV.
Thermal Hilbert moment QCD sum rules are used to obtain the temperature dependence of the hadronic parameters of charmonium in the vector channel, i.e. the $J$ / $psi$ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold. The continuum threshold $s_0$, which signals the end of the resonance region and the onset of perturbative QCD (PQCD), behaves as in all other hadronic channels, i.e. it decreases with increasing temperature until it reaches the PQCD threshold $s_0 = 4 m_Q^2$, with $m_Q$ the charm quark mass, at $Tsimeq 1.22 T_c$. The rest of the hadronic parameters behave very differently from those of light-light and heavy-light quark systems. The $J$ / $psi$ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to $T simeq 1.04 T_c$ beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant and then begins to increase monotonically around $T simeq T_c$. This behaviour of the total width and of the leptonic decay constant provides a strong indication that the $J$ / $psi$ resonance might survive beyond the critical temperature for deconfinement.
74 - Stephan Narison , LUPM 2021
We revisit, improve and confirm our previous results [1-3] from the scalar digluonium sum rules within the standard SVZ-expansion at N2LO {it without instantons} and {it beyond the minimal duality ansatz} : one resonance $oplus$ QCD continuum parametrization of the spectral function. We select different unsubtracted sum rules (USR) moments of degree $leq$ 4 for extracting the two lowest gluonia masses and couplings. We obtain in units of GeV: $(M_{G},f_G)=[1.04(12),0.53(17)]$ and $[1.52(12),0.57(16)]$. We attempt to predict the masses of their first radial excitations to be $M_{sigma} simeq 1.28(9)$ GeV and $M_{G_2}simeq 2.32(18)$ GeV. Using a combination of the USR with the subtracted sum rule (SSR), we estimate the conformal charge (subtraction constant $psi_G(0)$ of the scalar gluonium two-point correlator at zero momentum) which agrees completely with the Low Energy Theorem (LET) estimate. Combined with some low-energy vertex sum rules (LEV-SR), we confront our predictions for the widths with the observed $I=0$ scalar mesons spectra. We confirm that the $sigma$ and $f_0(980)$ meson can emerge from a maximal (destructive) ($bar uu+bar dd$) meson - $(sigma_B$) gluonium mixing [10]. The $f_0(1.37)$ and $f_0(1.5)$ indicate that they are (almost) pure gluonia states (copious decay into $4pi$) through $sigmasigma$, decays into $etaeta$ and $etaeta$ from the vertex $U(1)_A$ anomaly with a ratio $div$ to the square of the pseudoscalar mixing angle sin$^2theta_P$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا