Do you want to publish a course? Click here

New predictions on the mass of the $1^{-+}$ light hybrid meson from QCD sum rules

118   0   0.0 ( 0 )
 Added by Hongying Jin
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the coefficients of the dimension-8 quark and gluon condensates in the current-current correlator of $1^{-+}$ light hybrid current $gbar{q}(x)gamma_{ u}iG_{mu u}(x)q{(x)}$. With inclusion of these higher-power corrections and updating the input parameters, we re-analyze the mass of the $1^{-+}$ light hybrid meson from Monte-Carlo based QCD sum rules. Considering the possible violation of factorization of higher dimensional condensates and variation of $langle g^3G^3rangle$, we obtain a conservative mass range 1.72--2.60,GeV, which favors $pi_{1}(2015)$ as a better hybrid candidate compared with $pi_{1}(1600)$ and $pi_{1}(1400)$.



rate research

Read More

69 - A. Palameta , J. Ho , D. Harnett 2017
We use QCD Laplace sum-rules to explore mixing between conventional mesons and hybrids in the heavy quarkonium vector $J^{PC}!=!1^{--}$ channel. Our cross-correlator includes perturbation theory and contributions proportional to the four-dimensional and six-dimensional gluon condensates. We input experimentally determined charmonium and bottomonium hadron masses into both single and multi-resonance models in order to test them for conventional meson and hybrid components. In the charmonium sector we find evidence for meson-hybrid mixing in the $J/psi$ and a $approx4.3$ GeV resonance. In the bottomonium sector, we find that the $Upsilon(1S)$, $Upsilon(2S)$, $Upsilon(3S)$, and $Upsilon(4S)$ all exhibit mixing.
We explore conventional meson-hybrid mixing in $J^{PC}=1^{++}$ heavy quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator between a heavy conventional meson current and heavy hybrid current within the operator product expansion, including terms proportional to the four- and six-dimensional gluon condensates and the six-dimensional quark condensate. Using experimentally determined hadron masses, we construct models of the $1^{++}$ charmonium and bottomonium mass spectra. These models are used to investigate which resonances couple to both currents and thus exhibit conventional meson-hybrid mixing. In the charmonium sector, we find almost no conventional meson-hybrid mixing in the $chi_{c1}(1P)$, minimal mixing in the $X(3872)$, and significant mixing in both the $X(4140)$ and $X(4274)$. In the bottomonium sector, we find minimal conventional meson-hybrid mixing in the $chi_{b1}(1P)$ and significant mixing in both the $chi_{b1}(2P)$ and $chi_{b1}(3P)$.
Axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important for $1^{--}$ and $0^{-+}$ heavy quark hybrids. An updated analysis of axial vector charmonium and bottomonium hybrids is presented, including the effects of the dimension-six gluon condensate. The axial vector charmonium and bottomonium hybrid masses are predicted to be 5.13 GeV and 11.32 GeV, respectively. We discuss the implications of this result for the charmonium-like XYZ states and the charmonium hybrid multiplet structure observed in recent lattice calculations.
191 - A. Palameta , J. Ho , D. Harnett 2017
We use QCD Laplace sum-rules to study meson-hybrid mixing in vector ($1^{--}$) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multi-resonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the $J/psi$ and a 4.3~GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the $Upsilon(1S)$, $Upsilon(2S)$, $Upsilon(3S)$, and $Upsilon(4S)$.
QCD Laplace sum-rules are used to calculate axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses. Previous sum-rule studies of axial vector heavy quark hybrids did not include the dimension-six gluon condensate, which has been shown to be important in the $1^{--}$ and $0^{-+}$ channels. An updated analysis of axial vector heavy quark hybrids is performed, including the effects of the dimension-six gluon condensate, yielding mass predictions of 5.13 GeV for hybrid charmonium and 11.32 GeV for hybrid bottomonium. The charmonium hybrid mass prediction disfavours a hybrid interpretation of the X(3872), if it has $J^{PC}=1^{++}$, in agreement with the findings of other theoretical approaches. It is noted that QCD sum-rule results for the $1^{--}$, $0^{-+}$ and $1^{++}$ channels are in qualitative agreement with the charmonium hybrid multiplet structure observed in recent lattice calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا