No Arabic abstract
Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX2 and MX3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhanced functionality. Here a brief overview of binary transition metal dihalides and trihalides is given, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.
Two dimensional magnetic materials, with tunable electronic properties could lead to new spintronic, magnetic and magneto-optic applications. Here, we explore intrinsic magnetic ordering in two dimensional monolayers of transition metal tri-halides (MX$_3$, M = V, Cr, Mn, Fe and Ni, and X = F, Cl, Br and I), using density functional theory. We find that other than FeX$_3$ family which has an anti-ferromagnetic ground state, rest of the trihalides are ferromagnetic. Amongst these the VX$_3$ and NiX$_3$ family are found to have the highest magnetic transition temperature, beyond the room temperature. In terms of electronic properties, the tri-halides of Mn and Ni are either half metals or Dirac half metals, while the tri-halides of V, Fe and Cr are insulators. Among all the trihalides studied in this paper, we find the existence of very clean spin polarized Dirac half metallic state in MnF$_3$, MnCl$_3$, MnBr$_3$, NiF$_3$ and NiCl$_3$. These spin polarized Dirac half metals will be immensely useful for spin-current generation and other spintronic applications.
We systematically calculate the structure, formation enthalpy, formation free energy, elastic constants and electronic structure of Ti$_{0.98}$X$_{0.02}$ system by density functional theory (DFT) simulations to explore the effect of transition metal X (X=Ag, Cd, Co, Cr, Cu, Fe, Mn, Mo, Nb, Ni, Pd, Rh, Ru, Tc, and Zn) on the stability mechanism of $beta$-titanium. Based on our calculations, the results of formation enthalpy and free energy show that adding trace X is beneficial to the thermodynamic stability of $beta$-titanium. This behavior is well explained by the density of state (DOS). However, the tetragonal shear moduli of Ti$_{0.98}$X$_{0.02}$ systems are negative, indicating that $beta$-titanium doping with a low concentration of X is still elastically unstable at 0 K. Therefore, we theoretically explain that $beta$-titanium doping with trace transition metal X is unstable in the ground state.
Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. Here, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical side band that is observed repeatedly in monolayers of WSe$_2$ and WS$_2$ but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.
The magnetic and electronic properties of metal phthalocyanines (MPc) and fluorinated metal phthalocyanines (F$_{16}$MPc) are studied by means of spin density functional theory (SDFT). Several metals (M) such as Ca, all first d-row transition metals and Ag are investigated. By considering different open shell transition metals it is possible to tune the electronic properties of MPc, in particular the electronic molecular gap and total magnetic moment. Besides assigning the structural and electronic properties of MPc and F$_{16}$MPc, the vibrational modes analysis of the ScPctextendash ZnPc series have been studied and correlated to experimental measurements when available.
Atomically thin transition metal dichalcogenides (TMDs) are direct-gap semiconductors with strong light-matter and Coulomb interaction. The latter accounts for tightly bound excitons, which dominate the optical properties of these technologically promising materials. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. In a recent study, an experimental evidence for the existence of such dark states has been demonstrated, as well as their strong impact on the quantum efficiency of light emission in TMDs. Here, we reveal the microscopic origin of the excitonic coherence lifetime in two representative TMD materials (WS$_2$ and MoSe$_2$) within a joint study combining microscopic theory with optical experiments. We show that the excitonic coherence lifetime is determined by phonon-induced intra- and intervalley scattering into dark excitonic states. Remarkably, and in accordance with the theoretical prediction, we find an efficient exciton relaxation in WS$_2$ through phonon emission at all temperatures.