Do you want to publish a course? Click here

Magnetic, electronic and vibrational properties of metal and fluorinated metal phthalocyanines

259   0   0.0 ( 0 )
 Added by Ulrich Eckern
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic and electronic properties of metal phthalocyanines (MPc) and fluorinated metal phthalocyanines (F$_{16}$MPc) are studied by means of spin density functional theory (SDFT). Several metals (M) such as Ca, all first d-row transition metals and Ag are investigated. By considering different open shell transition metals it is possible to tune the electronic properties of MPc, in particular the electronic molecular gap and total magnetic moment. Besides assigning the structural and electronic properties of MPc and F$_{16}$MPc, the vibrational modes analysis of the ScPctextendash ZnPc series have been studied and correlated to experimental measurements when available.



rate research

Read More

225 - A. Mugarza , R. Robles , C. Krull 2012
We present a systematic investigation of molecule-metal interactions for transition-metal phthalocyanines (TMPc, with TM = Fe, Co, Ni, Cu) adsorbed on Ag(100). Scanning tunneling spectroscopy and density functional theory provide insight into the charge transfer and hybridization mechanisms of TMPc as a function of increasing occupancy of the 3d metal states. We show that all four TMPc receive approximately one electron from the substrate. Charge transfer occurs from the substrate to the molecules, inducing a charge reorganization in FePc and CoPc, while adding one electron to ligand pi-orbitals in NiPc and CuPc. This has opposite consequences on the molecular magnetic moment: in FePc and CoPc the interaction with the substrate tends to reduce the TM spin, whereas in NiPc and CuPc an additional spin is induced on the aromatic Pc ligand, leaving the TM spin unperturbed. In CuPc, the presence of both TM and ligand spins leads to a triplet ground state arising from intramolecular exchange coupling between d and pi electrons. In FePc and CoPc the magnetic moment of C and N atoms is antiparallel to that of the TM. The different character and symmetry of the frontier orbitals in the TMPc series leads to varying degrees of hybridization and correlation effects, ranging from the mixed-valence (FePc, CoPc) to the Kondo regime (NiPc, CuPc). Coherent coupling between Kondo and inelastic excitations induces finite-bias Kondo resonances involving vibrational transitions in both NiPc and CuPc and triplet-singlet transitions in CuPc.
The magnetic and transport properties of the metal phthalocyanine (MPc) and F$_{16}$MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S-Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F$_{16}$MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence band $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
We systematically explore chemical functionalization of monolayer black phosphorene via chemisorption of oxygen and fluorine atoms. Using the cluster expansion technique, with vary- ing concentration of the adsorbate, we determine the ground states considering both single- as well as double- side chemisorption, which have novel chemical and electronic properties. The nature of the bandgap depends on the concentration of the adsorbate: for fluorination the direct bandgap first decreases, and then increases while becoming indirect, with increasing fluorination, while for oxidation the bandgap first increases and then decreases, while mostly maintaining its direct nature. Further we find that the unique anisotropic free-carrier effective mass for both the electrons and holes, can be changed and even rotated by 90 degrees, with controlled chemisorption, which can be useful for exploring unusual quantum Hall effect, and novel electronic devices based on phosphorene.
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detailed investigation of the magnetic, electronic, and optical properties of transition-metal doped TNTs, based on hybrid density functional theory. In particular, we focus on the $3d$, the $4d$, as well as selected $5d$ transition-metal doped TNTs. Thereby, we are able to explain the enhanced optical activity and photocatalytic sensitivity observed in various experiments. We find, for example, that Cr- and W-doped TNTs can be employed for applications like water splitting and carbon dioxide reduction, and for spintronic devices. The best candidate for water splitting is Fe-doped TNT, in agreement with experimental observations. In addition, our findings provide valuable hints for future experimental studies of the ferromagnetic/spintronic behavior of metal-doped titania nanotubes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا