Do you want to publish a course? Click here

Microscopic derivation of open quantum walk on two node graph

82   0   0.0 ( 0 )
 Added by Ilya Sinayskiy
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A microscopic derivation of an open quantum walk on a two node graph is presented. It is shown that for the considered microscopic model of the system-bath interaction the resulting quantum master equation takes the form of a generalized master equation. The explicit form of the quantum coin operators is derived. The formalism is demonstrated for the example of a two-level system walking on a two-node graph.



rate research

Read More

Open Quantum Walks (OQWs) are exclusively driven by dissipation and are formulated as completely positive trace preserving (CPTP) maps on underlying graphs. The microscopic derivation of discrete and continuous in time OQWs is presented. It is assumed that connected nodes are weakly interacting via a common bath. The resulting reduced master equation of the quantum walker on the lattice is in the generalised master equation form. The time discretisation of the generalised master equation leads to the OQWs formalism. The explicit form of the transition operators establishes a connection between dynamical properties of the OQWs and thermodynamical characteristics of the environment. The derivation is demonstrated for the examples of the OQW on a circle of nodes and on a finite chain of nodes. For both examples a transition between diffusive and ballistic quantum trajectories is observed and found to be related to the temperature of the bath.
We provide a rigorous construction of Markovian master equations for a wide class of quantum systems that encompass quadratic models of finite size, linearly coupled to an environment modeled by a set of independent thermal baths. Our theory can be applied for both fermionic and bosonic models in any number of physical dimensions, and does not require any particular spatial symmetry of the global system. We show that, for non-degenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes of the system, with coupling constants that explicitly depend on the transformation matrices that diagonalize the Hamiltonian. Both the dynamics and the steady-state (guaranteed to be unique) properties can be obtained with a polynomial amount of resources in the system size. We also address the particle and energy current flowing through the system in a minimal two-bath scheme and find that they hold the structure of Landauers formula, being thermodynamically consistent.
In the mid-19th century, both the laws of mechanics and thermodynamics were known, and both appeared fundamental. This was changed by Boltzmann and Gibbs, who showed that thermodynamics can be *derived*, by applying mechanics to very large systems, and making simple statistical assumptions about their behavior. Similarly, when Quantum Mechanics (QM) was first discovered, it appeared to require two sets of postulates: one about the deterministic evolution of wavefunctions, and another about the probabilistic measurement process. Here again, the latter is derivable from the former: by applying unitary evolution to large systems (apparatuses, observers and environment), and making simple assumptions about their behavior, one can derive all the features of quantum measurement. We set out to demonstrate this claim, using a simple and explicit model of a quantum experiment, which we hope will be clear and compelling to the average physicist.
The finite dihedral group generated by one rotation and one flip is the simplest case of the non-abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral group. Considering the characteristics of the elements in the dihedral group, we conduct the model of discrete-time quantum walk on the Cayley graph of the dihedral group by special coding mode. This construction makes Fourier transformation can be used to carry out spectral analysis of the dihedral quantum walk, i.e. the non-abelian case. Furthermore, the relation between quantum walk without memory on the Cayley graph of the dihedral group and quantum walk with memory on a cycle is discussed, so that we can explore the potential of quantum walks without and with memory. Here, the numerical simulation is carried out to verify the theoretical analysis results and other properties of the proposed model are further studied.
The finite dihedral group generated by one rotation and one reflection is the simplest case of the non-abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral group. Considering the characteristics of the elements in the dihedral group, we propose a model of three-state discrete-time quantum walk (DTQW) on the Caylay graph of the dihedral group with Grover coin. We derive analytic expressions for the the position probability distribution and the long-time limit of the return probability starting from the origin. It is shown that the localization effect is governed by the size of the underlying dihedral group, coin operator and initial state. We also numerically investigate the properties of the proposed model via the probability distribution and the time-averaged probability at the designated position. The abundant phenomena of three-state Grover DTQW on the Caylay graph of the dihedral group can help the community to better understand and to develop new quantum algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا