No Arabic abstract
The development of scalable techniques to make 2D material heterostructures is a major obstacle that needs to be overcome before these materials can be implemented in device technologies industrially. Electrodeposition is an industrially compatible deposition technique that offers unique advantages in scaling 2D heterostructures. In this work, we demonstrate the electrodeposition of atomic layers of WS$_2$ over graphene electrodes using a single source precursor. Using conventional microfabrication techniques, graphene was patterned to create micro-electrodes where WS$_2$ was site-selectively deposited to form 2D heterostructures. We used various characterisation techniques, including atomic force microscopy, transmission electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy to show that our electrodeposited WS$_2$ layers are highly uniform and can be grown over graphene at a controllable deposition rate. This technique to selectively deposit TMDCs over microfabricated graphene electrodes paves the way towards wafer-scale production of 2D material heterostructures for nanodevice applications.
The combination of graphene with semiconductor materials in heterostructure photodetectors, has enabled amplified detection of femtowatt light signals using micron-scale electronic devices. Presently, the speed of such detectors is limited by long-lived charge traps and impractical strategies, e.g. the use of large gate voltage pulses, have been employed to achieve bandwidths suitable for applications, such as video-frame-rate imaging. Here, we report atomically thin graphene-WS$_2$ heterostructure photodetectors encapsulated in an ionic polymer, which are uniquely able to operate at bandwidths up to 1.5 kHz, whilst maintaining internal gain as large as $10^6$. Highly mobile ions and a nanometre scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of graphene over an unprecedented range at the interface with WS$_2$. We observe a responsivity $R=10^6$ A W$^{-1}$ and detectivity $D^*=3.8times10^{11}$ Jones, approaching that of single photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video-frame-rate imaging applications.
The nanofriction of Xe monolayers deposited on graphene was explored with a quartz crystal microbalance (QCM) at temperatures between 25 and 50 K. Graphene was grown by chemical vapor deposition and transferred to the QCM electrodes with a polymer stamp. At low temperatures, the Xe monolayers are fully pinned to the graphene surface. Above 30 K, the Xe film slides and the depinning onset coverage beyond which the film starts sliding decreases with temperature. Similar measurements repeated on bare gold show an enhanced slippage of the Xe films and a decrease of the depinning temperature below 25 K. Nanofriction measurements of krypton and nitrogen confirm this scenario.This thermolubric behavior is explained in terms of a recent theory of the size dependence of static friction between adsorbed islands and crystalline substrates.
Organometal trihalide perovskite solar cells have been rapidly developed and attracted much attention in recent years due to their high photoelectric conversion efficiency and low cost. Pulsed laser deposition (PLD) is a widely adopted technology which is used in the preparation of thin films, especially oxide thin films. With this technology, the thickness and composition of films can be conveniently and accurately controlled. In the structure of perovskite solar cells, TiO$_2$ layer working as the n-type semiconductor is used to block holes and transport electrons into electrode, which is crucial for the performance of whole devices. We introduced the PLD technique into preparation of TiO$_2$ layer. In comparison with common spin coating method, TiO$_2$ layer prepared by this technique is ultrathin and more compact. Compact TiO$_2$ (c-TiO$_2$) layers with optimized thickness of 32 nm have been prepared by the PLD method and the highest efficiency of 13.95 % for the MAPbI$_3$-based solar cell devices has been achieved.
Fabrication techniques such as laser patterning offer excellent potential for low cost and large area device fabrication. Conductive polymers can be used to replace expensive metallic inks such as silver and gold nanoparticles for printing technology. Electrical conductivity of the polymers can be improved by blending with carbon nanotubes. In this work, formulations of acid functionalised multiwall carbon nanotubes (f-MWCNT) and poly (ethylenedioxythiophene) [PEDOT]: polystyrene sulphonate [PSS] were processed, and thin films were prepared on plastic substrates. Conductivity of PEDOT: PSS increased almost four orders of magnitude after adding f-MWCNT. Work function of PEDOT:PSS/f-MWCNT films was ~ 0.5eV higher as compared to the work function of pure PEDOT:PSS films, determined by Kelvin probe method. Field-effect transistors source-drain electrodes were prepared on PET plastic substrates where PEDOT:PSS/f-MWCNT were patterned using laser ablation at 44mJ/pulse energy to define 36 micron electrode separation. Silicon nanowires were deposited using dielectrophoresis alignment technique to bridge the PEDOT:PSS/f-MWCNT laser patterned electrodes. Finally, top-gated nanowire field effect transistors were completed by depositing parylene C as polymer gate dielectric and gold as the top-gate electrode. Transistor characteristics showed p-type conduction with excellent gate electrode coupling, with an ON/OFF ratio of ~ 200. Thereby, we demonstrate the feasibility of using high workfunction, printable PEDOT:PSS/MWCNT composite inks for patterning source/drain electrodes for nanowire transistors on flexible substrates.
We report a high Responsivity broad band photo-detector working in the wavelength range 400 nm to 1100 nm in a horizontal array of Si microlines (line width ~1 micron) fabricated on a Silicon-on-Insulator (SOI) wafer. The array was made using a combination of plasma etching, wet etching and electron beam lithography. It forms a partially suspended (nearly free) Silicon microstructure on SOI. The array detector under full illumination of the device shows a peak Responsivity of 18 A/W at 800 nm, at a bias of 1V which is more than an order of magnitude of the Responsivity in a commercial Si detector. In a broad band of 400 nm to 1000 nm the Responsivity of the detector is in excess of 10A/W. We found that the suspension of the microlines in the array is necessary to obtain such high Responsivity. The suspension isolates the microlines from the bulk of the wafer and inhibits carrier recombination by the underlying oxide layer leading to enhanced photo-response. This has been validated through simulation. By using focused illumination of selected parts of a single microline of the array, we could isolate the contributions of the different parts of the microline to the photo-current.