Do you want to publish a course? Click here

Constant Modulus Beamforming via Convex Optimization

106   0   0.0 ( 0 )
 Added by Amir Adler
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present novel convex-optimization-based solutions to the problem of blind beamforming of constant modulus signals, and to the related problem of linearly constrained blind beamforming of constant modulus signals. These solutions ensure global optimality and are parameter free, namely, do not contain any tuneable parameters and do not require any a-priori parameter settings. The performance of these solutions, as demonstrated by simulated data, is superior to existing methods.



rate research

Read More

In this work, we propose an adaptive set-membership constant modulus (SM-CM) algorithm with a generalized sidelobe canceler (GSC) structure for blind beamforming. We develop a stochastic gradient (SG) type algorithm based on the concept of SM filtering for adaptive implementation. The filter weights are updated only if the constraint cannot be satisfied. In addition, we also propose an extension of two schemes of time-varying bounds for beamforming with a GSC structure and incorporate parameter and interference dependence to characterize the environment which improves the tracking performance of the proposed algorithm in dynamic scenarios. A convergence analysis of the proposed adaptive SM filtering techniques is carried out. Simulation results show that the proposed adaptive SM-CM-GSC algorithm with dynamic bounds achieves superior performance to previously reported methods at a reduced update rate.
We study the problem of reconstructing a block-sparse signal from compressively sampled measurements. In certain applications, in addition to the inherent block-sparse structure of the signal, some prior information about the block support, i.e. blocks containing non-zero elements, might be available. Although many block-sparse recovery algorithms have been investigated in Bayesian framework, it is still unclear how to incorporate the information about the probability of occurrence into regularization-based block-sparse recovery in an optimal sense. In this work, we bridge between these fields by the aid of a new concept in conic integral geometry. Specifically, we solve a weighted optimization problem when the prior distribution about the block support is available. Moreover, we obtain the unique weights that minimize the expected required number of measurements. Our simulations on both synthetic and real data confirm that these weights considerably decrease the required sample complexity.
We consider online convex optimization (OCO) over a heterogeneous network with communication delay, where multiple workers together with a master execute a sequence of decisions to minimize the accumulation of time-varying global costs. The local data may not be independent or identically distributed, and the global cost functions may not be locally separable. Due to communication delay, neither the master nor the workers have in-time information about the current global cost function. We propose a new algorithm, termed Hierarchical OCO (HiOCO), which takes full advantage of the network heterogeneity in information timeliness and computation capacity to enable multi-step gradient descent at both the workers and the master. We analyze the impacts of the unique hierarchical architecture, multi-slot delay, and gradient estimation error to derive upper bounds on the dynamic regret of HiOCO, which measures the gap of costs between HiOCO and an offline globally optimal performance benchmark.
231 - Yipeng Liu 2013
High sidelobe level and direction of arrival (DOA) estimation sensitivity are two major disadvantages of the Capon beamforming. To deal with these problems, this paper gives an overview of a series of robust Capon beamforming methods via shaping beam pattern, including sparse Capon beamforming, weighted sparse Capon beamforming, mixed norm based Capon beamforming, total variation minimization based Capon beamforming, mainlobe-to-sidelobe power ratio maximization based Capon beamforming. With these additional structure-inducing constraints, the sidelobe is suppressed, and the robustness against DOA mismatch is improved too. Simulations show that the obtained beamformers outperform the standard Capon beamformer.
Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-single-output (MISO) systems. Traditionally, finding the optimal beamforming solution relies on iterative algorithms, which introduces high computational delay and is thus not suitable for real-time implementation. In this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the uplink-downlink duality and the known structure of optimal solutions. Using this framework, we construct three beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signal-to-interference-plus-noise ratio (SINR) balancing problem, the power minimization problem, and the sum rate maximization problem. For the former two problems the BNNs adopt the supervised learning approach, while for the sum rate maximization problem a hybrid method of supervised and unsupervised learning is employed. Simulation results show that the BNNs can achieve near-optimal solutions to the SINR balancing and power minimization problems, and a performance close to that of the weighted minimum mean squared error algorithm for the sum rate maximization problem, while in all cases enjoy significantly reduced computational complexity. In summary, this work paves the way for fast realization of optimal beamforming in multiuser MISO systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا