Do you want to publish a course? Click here

Distribution-aware Block-sparse Recovery via Convex Optimization

112   0   0.0 ( 0 )
 Added by Sajad Daei Omshi
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We study the problem of reconstructing a block-sparse signal from compressively sampled measurements. In certain applications, in addition to the inherent block-sparse structure of the signal, some prior information about the block support, i.e. blocks containing non-zero elements, might be available. Although many block-sparse recovery algorithms have been investigated in Bayesian framework, it is still unclear how to incorporate the information about the probability of occurrence into regularization-based block-sparse recovery in an optimal sense. In this work, we bridge between these fields by the aid of a new concept in conic integral geometry. Specifically, we solve a weighted optimization problem when the prior distribution about the block support is available. Moreover, we obtain the unique weights that minimize the expected required number of measurements. Our simulations on both synthetic and real data confirm that these weights considerably decrease the required sample complexity.



rate research

Read More

105 - Amir Adler , Mati Wax 2017
We present novel convex-optimization-based solutions to the problem of blind beamforming of constant modulus signals, and to the related problem of linearly constrained blind beamforming of constant modulus signals. These solutions ensure global optimality and are parameter free, namely, do not contain any tuneable parameters and do not require any a-priori parameter settings. The performance of these solutions, as demonstrated by simulated data, is superior to existing methods.
Compressive sensing relies on the sparse prior imposed on the signal of interest to solve the ill-posed recovery problem in an under-determined linear system. The objective function used to enforce the sparse prior information should be both effective and easily optimizable. Motivated by the entropy concept from information theory, in this paper we propose the generalized Shannon entropy function and R{e}nyi entropy function of the signal as the sparsity promoting regularizers. Both entropy functions are nonconvex, non-separable. Their local minimums only occur on the boundaries of the orthants in the Euclidean space. Compared to other popular objective functions, minimizing the generalized entropy functions adaptively promotes multiple high-energy coefficients while suppressing the rest low-energy coefficients. The corresponding optimization problems can be recasted into a series of reweighted $l_1$-norm minimization problems and then solved efficiently by adapting the FISTA. Sparse signal recovery experiments on both the simulated and real data show the proposed entropy functions minimization approaches perform better than other popular approaches and achieve state-of-the-art performances.
180 - Jinming Wen , Wei Yu 2019
The orthogonal matching pursuit (OMP) algorithm is a commonly used algorithm for recovering $K$-sparse signals $xin mathbb{R}^{n}$ from linear model $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix. A fundamental question in the performance analysis of OMP is the characterization of the probability that it can exactly recover $x$ for random matrix $A$. Although in many practical applications, in addition to the sparsity, $x$ usually also has some additional property (for example, the nonzero entries of $x$ independently and identically follow the Gaussian distribution), none of existing analysis uses these properties to answer the above question. In this paper, we first show that the prior distribution information of $x$ can be used to provide an upper bound on $|x|_1^2/|x|_2^2$, and then explore the bound to develop a better lower bound on the probability of exact recovery with OMP in $K$ iterations. Simulation tests are presented to illustrate the superiority of the new bound.
The task of finding a sparse signal decomposition in an overcomplete dictionary is made more complicated when the signal undergoes an unknown modulation (or convolution in the complementary Fourier domain). Such simultaneous sparse recovery and blind demodulation problems appear in many applications including medical imaging, super resolution, self-calibration, etc. In this paper, we consider a more general sparse recovery and blind demodulation problem in which each atom comprising the signal undergoes a distinct modulation process. Under the assumption that the modulating waveforms live in a known common subspace, we employ the lifting technique and recast this problem as the recovery of a column-wise sparse matrix from structured linear measurements. In this framework, we accomplish sparse recovery and blind demodulation simultaneously by minimizing the induced atomic norm, which in this problem corresponds to the block $ell_1$ norm minimization. For perfect recovery in the noiseless case, we derive near optimal sample complexity bounds for Gaussian and random Fourier overcomplete dictionaries. We also provide bounds on recovering the column-wise sparse matrix in the noisy case. Numerical simulations illustrate and support our theoretical results.
We consider online convex optimization (OCO) over a heterogeneous network with communication delay, where multiple workers together with a master execute a sequence of decisions to minimize the accumulation of time-varying global costs. The local data may not be independent or identically distributed, and the global cost functions may not be locally separable. Due to communication delay, neither the master nor the workers have in-time information about the current global cost function. We propose a new algorithm, termed Hierarchical OCO (HiOCO), which takes full advantage of the network heterogeneity in information timeliness and computation capacity to enable multi-step gradient descent at both the workers and the master. We analyze the impacts of the unique hierarchical architecture, multi-slot delay, and gradient estimation error to derive upper bounds on the dynamic regret of HiOCO, which measures the gap of costs between HiOCO and an offline globally optimal performance benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا