Do you want to publish a course? Click here

Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE

68   0   0.0 ( 0 )
 Added by Matthias Samland
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, recently discovered by direct imaging. Being only 0.5 away from its host star it is well suited for spectroscopic analysis using integral field spectrographs. We aim to refine the atmospheric properties of this and to further constrain the architecture of the system by searching for additional companions. Using the SPHERE instrument at the VLT we extend the spectral coverage of the planet to the complete Y- to H-band range and provide photometry in the K12-bands (2.11, 2.25 micron). The object is compared to other cool and peculiar dwarfs. Furthermore, the posterior probability distributions of cloudy and clear atmospheric models are explored using MCMC. We verified our methods by determining atmospheric parameters for the two benchmark brown dwarfs Gl 570D and HD 3651B. For probing the innermost region for additional companions, archival VLT-NACO (L) SAM data is used. We present the first spectrophotometric measurements in the Y- and K-bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity and cloud sedimentation parameter f_sed. We find that the atmosphere is highly super-solar (Fe/H~1.0) with an extended, thick cloud cover of small particles. The model radius and surface gravity suggest planetary masses of about 9 M_jup. The evolutionary model only provides a lower mass limit of >2 M_jup (for pure hot-start). The cold-start model cannot explain the planets luminosity. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at Solar System scales and exclude brown-dwarf companions more massive than 20 M_jup beyond separations of ~2.5 au and giant planets more massive than 2 M_jup beyond 9 au.

rate research

Read More

Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB at a projected separation of 2000 au, a giant planet orbiting the primary star at 13 au, and a low-mass debris disk around the primary star with possibly a cold component and a warm component inferred from the spectral energy distribution. Aims. We aim to better constrain the orbital parameters of the known giant planet. Methods. We monitored the system over three years from 2015 to 2018 with the VLT/SPHERE exoplanet imaging instrument. Results. We measure an orbital motion for the planet of ~130 mas with a slightly decreasing separation (~10 mas) and find a hint of curvature. This potential curvature is further supported at 3$sigma$ significance when including literature GPI astrometry corrected for calibration systematics. Fits of the SPHERE and GPI data using three complementary approaches provide broadly similar results. The data suggest an orbital period of 32$^{+17}_{-9}$ yr (i.e. 12$^{+4}_{-2}$ au in semi-major axis), an inclination of 133$^{+14}_{-7}$ deg, an eccentricity of 0.45$^{+0.10}_{-0.15}$, and an argument of periastron passage of 87$^{+34}_{-30}$ deg [mod 180 deg]. The time at periastron passage and the longitude of node exhibit bimodal distributions because we do not detect yet if the planet is accelerating or decelerating along its orbit. Given the inclinations of the planets orbit and of the stellar rotation axis (134-144 deg), we infer alignment or misalignment within 18 deg for the star-planet spin-orbit. Further astrometric monitoring in the next 3-4 years is required to confirm at a higher significance the curvature in the planets motion, determine if the planet is accelerating or decelerating on its orbit, and further constrain its orbital parameters and the star-planet spin-orbit.
Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a ~10^3-10^4 contrast enhancement from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the stellar ones. Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over 3 years considering optimal observability conditions for the planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes and their instruments (abridged).
We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b which provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to $2times10^{-7}$, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis of $14^{+7}_{-3}$ AU, corresponding to a period of $41^{+35}_{-12}$ years (assuming a mass of $1.75$ $M_{odot}$ for the central star), and an inclination of $138^{+15}_{-13}$ deg. The remaining orbital elements are only marginally constrained by the current measurements. These preliminary values suggest an orbit which does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.
We present $kappa$ Andromeda bs photometry and astrometry taken with Subaru/SCExAO+HiCIAO and Keck/NIRC2, combined with recently published SCExAO/CHARIS low-resolution spectroscopy and published thermal infrared photometry to further constrain the companions atmospheric properties and orbit. $kappa$ And bs Y/Y-K colors are redder than field dwarfs, consistent with its youth and lower gravity. Empirical comparisons of its Y-band photometry and CHARIS spectrum to a large spectral library of isolated field dwarfs reaffirm the conclusion from Currie et al. (2018) that it likely has a low gravity but admit a wider range of most plausible spectral types (L0-L2). Our gravitational classification also suggests that the best-fit objects for $kappa$ And b may have lower gravity than those previously reported. Atmospheric models lacking dust/clouds fail to reproduce its entire 1--4.7 $mu m$ spectral energy distribution, cloudy atmosphere models with temperatures of $sim$ 1700--2000 $K$ better match $kappa$ And b data. Most well-fitting model comparisons favor 1700--1900 $K$, a surface gravity of log(g) $sim$ 4--4.5, and a radius of 1.3--1.6,$R_{rm Jup}$; the best-fit model (DRIFT-Phoenix) yields the coolest and lowest-gravity values: $T_{rm eff}$=1700 K and $log g$=4.0. An update to $kappa$ And bs orbit with ExoSOFT using new astrometry spanning seven years reaffirms its high eccentricity ($0.77pm0.08$). We consider a scenario where unseen companions are responsible for scattering $kappa$ And b to a wide separation and high eccentricity. If three planets, including $kappa$ And b, were born with coplanar orbits and one of them was ejected by gravitational scattering, a potential inner companion with mass $gtrsim10M_{rm Jup}$ could be located at $lesssim$ 25 au.
With an orbital distance comparable to that of Saturn in the solar system, bpic b is the closest (semi-major axis $simeq$,9,au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to bpic have been obtained in the southwestern part of the orbit, which severely limits the determination of the planets orbital parameters. We aimed at further constraining bpic b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. We used SPHERE at the VLT to precisely monitor the orbital motion of beta bpic b since first light of the instrument in 2014. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6,au) and prevented further detection. We redetected bpic b on the northeast side of the disk at a separation of 139,mas and a PA of 30$^{circ}$ in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of $a = 9.0 pm 0.5$ au (1 $sigma $), it definitely excludes previously reported possible long orbital periods, and excludes bpic b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا