Do you want to publish a course? Click here

Astrometric Confirmation and Preliminary Orbital Parameters of the Young Exoplanet 51 Eridani b with the Gemini Planet Imager

70   0   0.0 ( 0 )
 Added by Robert De Rosa
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new Gemini Planet Imager observations of the young exoplanet 51 Eridani b which provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to $2times10^{-7}$, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semimajor axis of $14^{+7}_{-3}$ AU, corresponding to a period of $41^{+35}_{-12}$ years (assuming a mass of $1.75$ $M_{odot}$ for the central star), and an inclination of $138^{+15}_{-13}$ deg. The remaining orbital elements are only marginally constrained by the current measurements. These preliminary values suggest an orbit which does not share the same inclination as the orbit of the distant M-dwarf binary, GJ 3305, which is a wide physically bound companion to 51 Eridani.



rate research

Read More

Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric composition and luminosity, which is influenced by their formation mechanism. Using the Gemini Planet Imager, we discovered a planet orbiting the $sim$20 Myr-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water vapor absorption. Modeling of the spectra and photometry yields a luminosity of L/LS=1.6-4.0 x 10-6 and an effective temperature of 600-750 K. For this age and luminosity, hot-start formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the cold- start core accretion process that may have formed Jupiter.
We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI Data Reduction Pipeline (DRP) that significantly affected the determination of angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues, and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
We present new $H$ (1.5-1.8 $mu$m) photometric and $K_1$ (1.9-2.2 $mu$m) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The $H$-band magnitude has been significantly improved relative to previous measurements, whereas the low resolution $K_1$ ($lambda/deltalambda approx 66$) spectrum is featureless within the measurement uncertainties, and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature $L^{prime}$ photometry, we compare the spectral energy distribution of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in $K_1-L^{prime}$ color than 2MASS J12073346-3932539 b and HR 8799 c and d, despite having a similar $L^{prime}$ magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the spectral energy distribution of HD 95086 b is best fit by low temperature ($T_{rm eff} =$ 800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color-magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.
We present new observations of the planet beta Pictoris b from 2018 with GPI, the first GPI observations following conjunction. Based on these new measurements, we perform a joint orbit fit to the available relative astrometry from ground-based imaging, the Hipparcos Intermediate Astrometric Data (IAD), and the Gaia DR2 position, and demonstrate how to incorporate the IAD into direct imaging orbit fits. We find a mass consistent with predictions of hot-start evolutionary models and previous works following similar methods, though with larger uncertainties: 12.8 [+5.3, -3.2] M_Jup. Our eccentricity determination of 0.12 [+0.04, -0.03] disfavors circular orbits. We consider orbit fits to several different imaging datasets, and find generally similar posteriors on the mass for each combination of imaging data. Our analysis underscores the importance of performing joint fits to the absolute and relative astrometry simultaneously, given the strong covariance between orbital elements. Time of conjunction is well constrained within 2.8 days of 2017 September 13, with the star behind the planets Hill sphere between 2017 April 11 and 2018 February 16 (+/- 18 days). Following the recent radial velocity detection of a second planet in the system, beta Pic c, we perform additional two-planet fits combining relative astrometry, absolute astrometry, and stellar radial velocities. These joint fits find a significantly smaller mass for the imaged planet beta Pic b, of 8.0 +/- 2.6 M_Jup, in a somewhat more circular orbit. We expect future ground-based observations to further constrain the visual orbit and mass of the planet in advance of the release of Gaia DR4.
197 - Eric L. Nielsen 2014
We present new astrometry for the young (12--21 Myr) exoplanet beta Pictoris b taken with the Gemini/NICI and Magellan/MagAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of beta Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.1 (+5.3, -0.5) AU and orbital eccentricity <0.15 at 68% confidence (with 95% confidence intervals of 8.2--48 AU and 0.00--0.82 for semi-major axis and eccentricity, respectively, due to a long narrow degenerate tail between the two). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planets projected separation is currently decreasing. With unsaturated data of the entire beta Pic system (primary star, planet, and disk) obtained thanks to NICIs semi-transparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks: the position angle (PA) of nodes for the planets orbit (211.8 +/- 0.3 degrees) is 7.4 sigma greater than the PA of the spine of the outer disk and 3.2 sigma less than the warped inner disk PA, indicating the disk is not collisionally relaxed. Finally, for the first time we are able to dynamically constrain the mass of the primary star beta Pic to 1.76 (+0.18, -0.17) solar masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا