No Arabic abstract
Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a ~10^3-10^4 contrast enhancement from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the stellar ones. Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over 3 years considering optimal observability conditions for the planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of Extremely Large Telescopes and their instruments (abridged).
We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations of Proxima taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm/s. We ran a joint MCMC analysis on the time series of the radial velocity and full-width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with stellar activity. We confirm the presence of Proxima b independently in the ESPRESSO data. The ESPRESSO data on its own shows Proxima b at a period of 11.218 $pm$ 0.029 days, with a minimum mass of 1.29 $pm$ 0.13 Me. In the combined dataset we measure a period of 11.18427 $pm$ 0.00070 days with a minimum mass of 1.173 $pm$ 0.086 Me. We find no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of merely 40 cm/s. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 $pm$ 0.08 Me. We find that the FWHM of the CCF can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the radial velocity data from part of the influence of stellar activity. The activity-induced radial velocity signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot-dominated. The data collected excludes the presence of extra companions with masses above 0.6 Me at periods shorter than 50 days.
Proxima Centauri is known to host an earth-like planet in its habitable zone; very recently a second candidate planet was proposed based on radial velocities. At quadrature, the expected projected separation of this new candidate is larger than 1 arcsec, making it a potentially interesting target for direct imaging. While difficult, identification of the optical counterpart of this planet would allow detailed characterization of the closest planetary system. We searched for a counterpart in SPHERE images acquired during four years through the SHINE survey. In order to account for the large orbital motion of the planet, we used a method that assumes the circular orbit obtained from radial velocities and exploits the sequence of observations acquired close to quadrature in the orbit. We checked this with a more general approach that considers keplerian motion, K-stacker. We did not obtain a clear detection. The best candidate has S/N=6.1 in the combined image. A statistical test suggests that the probability that this detection is due to random fluctuation of noise is < 1% but this result depends on the assumption that distribution of noise is uniform over the image. The position of this candidate and the orientation of its orbital plane fit well with observations in the ALMA 12m array image. However, the astrometric signal expected from the orbit of the candidate we detected is 3-sigma away from the astrometric motion of Proxima as measured from early Gaia data. This, together with the unexpectedly high flux associated with our direct imaging detection, means we cannot confirm that our candidate is indeed Proxima c. On the other hand, if confirmed, this would be the first observation in imaging of a planet discovered from radial velocities and the second one (after Fomalhaut b) of reflecting circumplanetary material. Further confirmation observations should be done as soon as possible.
51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, recently discovered by direct imaging. Being only 0.5 away from its host star it is well suited for spectroscopic analysis using integral field spectrographs. We aim to refine the atmospheric properties of this and to further constrain the architecture of the system by searching for additional companions. Using the SPHERE instrument at the VLT we extend the spectral coverage of the planet to the complete Y- to H-band range and provide photometry in the K12-bands (2.11, 2.25 micron). The object is compared to other cool and peculiar dwarfs. Furthermore, the posterior probability distributions of cloudy and clear atmospheric models are explored using MCMC. We verified our methods by determining atmospheric parameters for the two benchmark brown dwarfs Gl 570D and HD 3651B. For probing the innermost region for additional companions, archival VLT-NACO (L) SAM data is used. We present the first spectrophotometric measurements in the Y- and K-bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity and cloud sedimentation parameter f_sed. We find that the atmosphere is highly super-solar (Fe/H~1.0) with an extended, thick cloud cover of small particles. The model radius and surface gravity suggest planetary masses of about 9 M_jup. The evolutionary model only provides a lower mass limit of >2 M_jup (for pure hot-start). The cold-start model cannot explain the planets luminosity. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at Solar System scales and exclude brown-dwarf companions more massive than 20 M_jup beyond separations of ~2.5 au and giant planets more massive than 2 M_jup beyond 9 au.
We previously reported the direct detection of a low mass companion at a projected separation of 55+-2 AU around the B9 type star {kappa} Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. We present new angular differential imaging (ADI) images of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L), 4.052 (NB 4.05) and 4.78 {mu}m (M) obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09 mag for {kappa} And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L band. We derive NB 4.05 = 13.0 +- 0.2 and M = 13.3 +- 0.3 mag and estimate Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy distribution of the companion and compare it to seven PHOENIX-based atmospheric models in order to derive Teff = 1900+100-200 K. Models do not set constrains on the surface gravity. ``Hot-start evolutionary models predict masses of 14+25-2 MJup based on the luminosity and temperature estimates, and considering a conservative age range for the system (30+120-10 Myr). ``warm-start evolutionary tracks constrain the mass to M >= 11 MJup. Therefore, the mass of {kappa} Andromedae b mostly falls in the brown-dwarf regime, due to remaining uncertainties in age and mass-luminosity models. According to the formation models, disk instability in a primordial disk could account for the position and a wide range of plausible masses of {kappa} And b.
The planets HR8799bc display nearly identical colours and spectra as variable young exoplanet analogues such as VHS 1256-1257ABb and PSO J318.5-22, and are likely to be similarly variable. Here we present results from a 5-epoch SPHERE IRDIS broadband-$H$ search for variability in these two planets. HR 8799b aperture photometry and HR 8799bc negative simulated planet photometry share similar trends within uncertainties. Satellite spot lightcurves share the same trends as the planet lightcurves in the August 2018 epochs, but diverge in the October 2017 epochs. We consider $Delta(mag)_{b} - Delta(mag)_{c}$ to trace non-shared variations between the two planets, and rule out non-shared variability in $Delta(mag)_{b} - Delta(mag)_{c}$ to the 10-20$%$ level over 4-5 hours. To quantify our sensitivity to variability, we simulate variable lightcurves by inserting and retrieving a suite of simulated planets at similar radii from the star as HR 8799bc, but offset in position angle. For HR 8799b, for periods $<$10 hours, we are sensitive to variability with amplitude $>5%$. For HR 8799c, our sensitivity is limited to variability $>25%$ for similar periods.