No Arabic abstract
Measuring interdependence between probabilities of default (PDs) in different industry sectors of an economy plays a crucial role in financial stress testing. Thereby, regression approaches may be employed to model the impact of stressed industry sectors as covariates on other response sectors. We identify vine copula based quantile regression as an eligible tool for conducting such stress tests as this method has good robustness properties, takes into account potential nonlinearities of conditional quantile functions and ensures that no quantile crossing effects occur. We illustrate its performance by a data set of sector specific PDs for the German economy. Empirical results are provided for a rough and a fine-grained industry sector classification scheme. Amongst others, we confirm that a stressed automobile industry has a severe impact on the German economy as a whole at different quantile levels whereas e.g., for a stressed financial sector the impact is rather moderate. Moreover, the vine copula based quantile regression approach is benchmarked against both classical linear quantile regression and expectile regression in order to illustrate its methodological effectiveness in the scenarios evaluated.
Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. The authors introduce a new semiparametric quantile regression method based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and saved computational time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method.
Quantile regression, the prediction of conditional quantiles, finds applications in various fields. Often, some or all of the variables are discrete. The authors propose two new quantile regression approaches to handle such mixed discrete-continuous data. Both of them generalize the continuous D-vine quantile regression, where the dependence between the response and the covariates is modeled by a parametric D-vine. D-vine quantile regression provides very flexible models, that enable accurate and fast predictions. Moreover, it automatically takes care of major issues of classical quantile regression, such as quantile crossing and interactions between the covariates. The first approach keeps the parametric estimation of the D-vines, but modifies the formulas to account for the discreteness. The second approach estimates the D-vine using continuous convolution to make the discrete variables continuous and then estimates the D-vine nonparametrically. A simulation study is presented examining for which scenarios the discrete-continuous D-vine quantile regression can provide superior prediction abilities. Lastly, the functionality of the two introduced methods is demonstrated by a real-world example predicting the number of bike rentals.
In a number of cases, the Quantile Gaussian Process (QGP) has proven effective in emulating stochastic, univariate computer model output (Plumlee and Tuo, 2014). In this paper, we develop an approach that uses this emulation approach within a Bayesian model calibration framework to calibrate an agent-based model of an epidemic. In addition, this approach is extended to handle the multivariate nature of the model output, which gives a time series of the count of infected individuals. The basic modeling approach is adapted from Higdon et al. (2008), using a basis representation to capture the multivariate model output. The approach is motivated with an example taken from the 2015 Ebola Challenge workshop which simulated an ebola epidemic to evaluate methodology.
We present a model for generating probabilistic forecasts by combining kernel density estimation (KDE) and quantile regression techniques, as part of the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014. The KDE method is initially implemented with a time-decay parameter. We later improve this method by conditioning on the temperature or the period of the week variables to provide more accurate forecasts. Secondly, we develop a simple but effective quantile regression forecast. The novel aspects of our methodology are two-fold. First, we introduce symmetry into the time-decay parameter of the kernel density estimation based forecast. Secondly we combine three probabilistic forecasts with different weights for different periods of the month.
In the multiple testing context, we utilize vine copulae for optimizing the effective number of tests. It is well known that for the calibration of multiple tests (for control of the family-wise error rate) the dependencies between the marginal tests are of utmost importance. It has been shown in previous work, that positive dependencies between the marginal tests can be exploited in order to derive a relaxed Sidak-type multiplicity correction. This correction can conveniently be expressed by calculating the corresponding effective number of tests for a given (global) significance level. This methodology can also be applied to blocks of test statistics so that the effective number of tests can be calculated by the sum of the effective numbers of tests for each block. In the present work, we demonstrate how the power of the multiple test can be optimized by taking blocks with high inner-block dependencies. The determination of those blocks will be performed by means of an estimated vine copula model. An algorithm is presented which uses the information of the estimated vine copula to make a data-driven choice of appropriate blocks in terms of (estimated) dependencies. Numerical experiments demonstrate the usefulness of the proposed approach.