No Arabic abstract
We establish a new estimate for the Ginzburg-Landau energies $E_{epsilon}(u)=int_Mfrac{1}{2}|du|^2+frac{1}{4epsilon^2}(1-|u|^2)^2$ of complex-valued maps $u$ on a compact, oriented manifold $M$ with $b_1(M) eq 0$, obtained by decomposing the harmonic component $h_u$ of the one-form $ju:=u^1du^2-u^2du^1$ into an integral and fractional part. We employ this estimate to show that, for critical points $u_{epsilon}$ of $E_{epsilon}$ arising from the two-parameter min-max construction considered by the author in previous work, a nontrivial portion of the energy must concentrate on a stationary, rectifiable $(n-2)$-varifold as $epsilonto 0$.
We use min-max techniques to produce nontrivial solutions $u_{epsilon}:Mto mathbb{R}^2$ of the Ginzburg-Landau equation $Delta u_{epsilon}+frac{1}{epsilon^2}(1-|u_{epsilon}|^2)u_{epsilon}=0$ on a given compact Riemannian manifold, whose energy grows like $|logepsilon|$ as $epsilonto 0$. When the degree one cohomology $H^1_{dR}(M)=0$, we show that the energy of these solutions concentrates on a nontrivial stationary, rectifiable $(n-2)$-varifold $V$.
We adapt the viscosity method introduced by Rivi`ere to the free boundary case. Namely, given a compact oriented surface $Sigma$, possibly with boundary, a closed ambient Riemannian manifold $(mathcal{M}^m,g)$ and a closed embedded submanifold $mathcal{N}^nsubsetmathcal{M}$, we study the asymptotic behavior of (almost) critical maps $Phi$ for the functional begin{align*} &E_sigma(Phi):=operatorname{area}(Phi)+sigmaoperatorname{length}(Phi|_{partialSigma})+sigma^4int_Sigma|{mathrm {I!I}}^Phi|^4,operatorname{vol}_Phi end{align*} on immersions $Phi:Sigmatomathcal{M}$ with the constraint $Phi(partialSigma)subseteqmathcal{N}$, as $sigmato 0$, assuming an upper bound for the area and a suitable entropy condition. As a consequence, given any collection $mathcal{F}$ of compact subsets of the space of smooth immersions $(Sigma,partialSigma)to(mathcal{M},mathcal{N})$, assuming $mathcal{F}$ to be stable under isotopies of this space we show that the min-max value begin{align*} &beta:=inf_{Ainmathcal{F}}max_{Phiin A}operatorname{area}(Phi) end{align*} is the sum of the areas of finitely many branched minimal immersions $Phi_{(i)}:Sigma_{(i)}tomathcal{M}$ with $partial_ uPhi_{(i)}perp Tmathcal{N}$ along $partialSigma_{(i)}$, whose (connected) domains $Sigma_{(i)}$ can be different from $Sigma$ but cannot have a more complicated topology. We adopt a point of view which exploits extensively the diffeomorphism invariance of $E_sigma$ and, along the way, we simplify several arguments from the original work. Some parts generalize to closed higher-dimensional domains, for which we get a rectifiable stationary varifold in the limit.
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different method, we generalize maximum principles of Omori and Yau to a viscosity version.
Given any admissible $k$-dimensional family of immersions of a given closed oriented surface into an arbitrary closed Riemannian manifold, we prove that the corresponding min-max width for the area is achieved by a smooth (possibly branched) immersed minimal surface with multiplicity one and Morse index bounded by $k$.
In this paper, we consider Hessian equations with its structure as a combination of elementary symmetric functions on closed Kahler manifolds. We provide a sufficient and necessary condition for the solvability of these equations, which generalize the results of Hessian equations and Hessian quotient equations.