Do you want to publish a course? Click here

Hessian equations of Krylov type on Kahler manifolds

142   0   0.0 ( 0 )
 Added by Li Chen
 Publication date 2021
  fields
and research's language is English
 Authors Li Chen




Ask ChatGPT about the research

In this paper, we consider Hessian equations with its structure as a combination of elementary symmetric functions on closed Kahler manifolds. We provide a sufficient and necessary condition for the solvability of these equations, which generalize the results of Hessian equations and Hessian quotient equations.



rate research

Read More

Let $(X,omega)$ be a compact Kahler manifold of dimension $n$ and fix $1leq mleq n$. We prove that the total mass of the complex Hessian measure of $omega$-$m$-subharmonic functions is non-decreasing with respect to the singularity type. We then solve complex Hessian equations with prescribed singularity, and prove a Hodge index type inequality for positive currents.
244 - Jiaogen Zhang 2021
In this paper we consider the Monge-Amp`{e}re type equations on compact almost Hermitian manifolds. We derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. Finally, we also obtain an existence theorem if there exists an admissible supersolution.
75 - A. Derdzinski 2002
A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( ablatau)$ are eigenvectors of both $ abla dtau$ and the Ricci tensor. For instance, this is always the case if $tau$ is a nonconstant $C^infty$ function on a Kahler manifold $(M,g)$ of complex dimension $m>2$ and the metric $tilde g=g/tau^2$, defined wherever $tau e 0$, is Einstein. (When such $tau$ exists, $(M,g)$ may be called {it almost-everywhere conformally Einstein}.) We provide a complete classification of compact Kahler manifolds with special Kahler-Ricci potentials and use it to prove a structure theorem for compact Kahler manifolds of any complex dimension $m>2$ which are almost-everywhere conformally Einstein.
In a paper by Angella, Otal, Ugarte, and Villacampa, the authors conjectured that on a compact Hermitian manifold, if a Gauduchon connection other than Chern or Strominger is Kahler-like, then the Hermitian metric must be Kahler. They also conjectured that if two Gauduchon connections are both Kahler-like, then the metric must be Kahler. In this paper, we discuss some partial answers to the first conjecture, and give a proof to the second conjecture. In the process, we discovered an interesting `duality phenomenon amongst Gauduchon connections, which seems to be intimately tied to the question, though we do not know if there is any underlying reason for that from physics.
A new proof for stability estimates for the complex Monge-Amp`ere and Hessian equations is given, which does not require pluripotential theory. A major advantage is that the resulting stability estimates are then uniform under general degenerations of the background metric in the case of the Monge-Amp`ere equation, and under degenerations to a big class in the case of Hessian equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا