Do you want to publish a course? Click here

EPR-entangled Bose-Einstein condensates in state-dependent potentials: a dynamical study

160   0   0.0 ( 0 )
 Added by Hadrien Kurkjian
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study generation of non-local correlations by atomic interactions in a pair of bi-modal Bose-Einstein Condensates in state-dependent potentials including spatial dynamics. The wave-functions of the four components are described by combining a Fock state expansion with a time-dependent Hartree-Fock Ansatz, so that both the spatial dynamics and the local and non-local quantum correlations are accounted for. We find that despite the spatial dynamics, our protocole generates enough non-local entanglement to perform an EPR steering experiment with two spatially separated con-densates of a few thousands of atoms.



rate research

Read More

The interplay between disorder and interactions is a leit-motiv of condensed matter physics, since it constitutes the driving mechanism of the metal-insulator transition. Bose-Einstein condensates in optical potentials are proving to be powerful tools to quantum simulate disordered systems. We will review the main experimental and theoretical results achieved in the last few years in this rapidly developing field.
116 - J. Reslen , C.E. Creffield , 2008
Bose-Einstein condensates subject to short pulses (`kicks) from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.
We propose and analyze a scheme to entangle the collective spin states of two spatially separated bimodal Bose-Einstein condensates. Using a four-mode approximation for the atomic field, we show that elastic collisions in a state-dependent potential simultaneously create spin-squeezing in each condensate and entangle the collective spins of the two condensates. We investigate mostly analytically the non-local quantum correlations that arise in this system at short times and show that Einstein-Podolsky-Rosen (EPR) entanglement is generated between the condensates. At long times we point out macroscopic entangled states and explain their structure. The scheme can be implemented with condensates in state-dependent microwave potentials on an atom chip.
We describe a pairing mean-field theory related to the Hartree-Fock-Bogoliubov approach, and apply it to the dynamics of dissociation of a molecular Bose-Einstein condensate (BEC) into correlated bosonic atom pairs. We also perform the same simulation using two stochastic phase-space techniques for quantum dynamics -- the positive P-representation method and the truncated Wigner method. By comparing the results of our calculations we are able to assess the relative strength of these theoretical techniques in describing molecular dissociation in one spatial dimension. An important aspect of our analysis is the inclusion of atom-atom interactions which can be problematic for the positive-P method. We find that the truncated Wigner method mostly agrees with the positive-P simulations, but can be simulated for significantly longer times. The pairing mean-field theory results diverge from the quantum dynamical methods after relatively short times.
88 - M. White , H. Gao , M. Pasienski 2006
Bose-Einstein condensates of $^{87}$Rb atoms are transferred into radio-frequency (RF) induced adiabatic potentials and the properties of the corresponding dressed states are explored. We report on measurements of the spin composition of dressed condensates. We also show that adiabatic potentials can be used to trap atom gases in novel geometries, including suspending a cigar-shaped cloud above a curved sheet of atoms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا