The interplay between disorder and interactions is a leit-motiv of condensed matter physics, since it constitutes the driving mechanism of the metal-insulator transition. Bose-Einstein condensates in optical potentials are proving to be powerful tools to quantum simulate disordered systems. We will review the main experimental and theoretical results achieved in the last few years in this rapidly developing field.
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials have opened a new window for studying fundamental phenomena related to disorder. In particular, we point our attention to recent experimental studies on Anderson localization and on the interplay of disorder and weak interactions. These realize a very promising starting point for a deeper understanding of the complex behaviour of interacting, disordered systems.
Bose-Einstein-condensed gases in external spatially random potentials are considered in the frame of a stochastic self-consistent mean-field approach. This method permits the treatment of the system properties for the whole range of the interaction strength, from zero to infinity, as well as for arbitrarily strong disorder. Besides a condensate and superfluid density, a glassy number density due to a spatially inhomogeneous component of the condensate occurs. For very weak interactions and sufficiently strong disorder, the superfluid fraction can become smaller than the condensate fraction, while at relatively strong interactions, the superfluid fraction is larger than the condensate fraction for any strength of disorder. The condensate and superfluid fractions, and the glassy fraction always coexist, being together either nonzero or zero. In the presence of disorder, the condensate fraction becomes a nonmonotonic function of the interaction strength, displaying an antidepletion effect caused by the competition between the stabilizing role of the atomic interaction and the destabilizing role of the disorder. With increasing disorder, the condensate and superfluid fractions jump to zero at a critical value of the disorder parameter by a first-order phase transition.
Bose-Einstein condensates of $^{87}$Rb atoms are transferred into radio-frequency (RF) induced adiabatic potentials and the properties of the corresponding dressed states are explored. We report on measurements of the spin composition of dressed condensates. We also show that adiabatic potentials can be used to trap atom gases in novel geometries, including suspending a cigar-shaped cloud above a curved sheet of atoms.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length diverging at low frequency as $ell(omega)sim 1/omega^alpha$. We show that the well known result $alpha=2$ applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, $alpha$ starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, $alpha=1$. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.