No Arabic abstract
We study instanton corrections to four-point correlation correlation function of half-BPS operators in $mathcal N=4$ SYM in the light-cone limit when operators become null separated in a sequential manner. We exploit the relation between the correlation function in this limit and light-like rectangular Wilson loop to determine the leading instanton contribution to the former from the semiclassical result for the latter. We verify that the light-like rectangular Wilson loop satisfies anomalous conformal Ward identities nonperturbatively, in the presence of instantons. We then use these identities to compute the leading instanton contribution to the light-like cusp anomalous dimension and to anomalous dimension of twist-two operators with large spin.
We revisit the computation of instanton effects to various correlation functions in ${cal N}=4$ SYM and clarify a controversy existing in the literature regarding their consistency with the OPE and conformal symmetry. To check these properties, we examine the conformal partial wave decomposition of four-point correlators involving combinations of half-BPS and Konishi operators and isolate the contribution from the conformal primary scalar operators of twist four. We demonstrate that the leading instanton correction to this contribution is indeed consistent with conformal symmetry and compute the corresponding corrections to the OPE coefficients and the scaling dimensions of such twist-four operators. Our analysis justifies the regularization procedure used to compute ultraviolet divergent instanton contribution to correlation functions involving unprotected operators.
It is known since 1980s that the instanton-induced t Hooft effective Lagrangian not only can solve the so called $U(1)a$ problem, by making the $eta$ meson heavy etc, but it can also lead to chiral symmetry breaking. In 1990s it was demonstrated that, taken to higher orders, this Lagrangian correctly reproduces effective forces in a large set of hadronic channels, mesonic and baryonic ones. Recent progress in understanding gauge topology at finite temperatures is related with the so called {em instanton-dyons}, the constituents of the instantons. Some of them, called $L$-dyons, possess the anti-periodic fermionic zero modes, and thus form a new version of the t Hooft effective Lagrangian. This paper is our first study of a wide set of hadronic correlation function. We found that, at the lowest temperatures at which this approach is expected to be applicable, those may be well compatible with what is known about them based on phenomenological and lattice studies, provided $L$ and $M$ type dyons are strongly correlated.
We study the momentum-space 4-point correlation function of identical scalar operators in conformal field theory. Working specifically with null momenta, we show that its imaginary part admits an expansion in conformal blocks. The blocks are polynomials in the cosine of the scattering angle, with degree $ell$ corresponding to the spin of the intermediate operator. The coefficients of these polynomials are obtained in a closed-form expression for arbitrary spacetime dimension $d > 2$. If the scaling dimension of the intermediate operator is large, the conformal block reduces to a Gegenbauer polynomial $mathcal{C}_ell^{(d-2)/2}$. If on the contrary the scaling dimension saturates the unitarity bound, the block is different Gegenbauer polynomial $mathcal{C}_ell^{(d-3)/2}$. These results are then used as an inversion formula to compute OPE coefficients in a free theory example.
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and $(1-n_{s}) = 0.042$, where $n_{s}$ is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ with $c>1$. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit $z to 1$, which was unknown until now. In this study, we computed it in general by studying the pole structure of the {it fusion matrix} (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value $frac{c-1}{12}$ if the total Liouville momentum exceeds beyond the {it BTZ threshold}. This might be interpreted as a black hole formation in AdS${}_3$. As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench. We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general $n$-th Renyi entropy after a local quench and out of time ordered correlators.