No Arabic abstract
It is known since 1980s that the instanton-induced t Hooft effective Lagrangian not only can solve the so called $U(1)a$ problem, by making the $eta$ meson heavy etc, but it can also lead to chiral symmetry breaking. In 1990s it was demonstrated that, taken to higher orders, this Lagrangian correctly reproduces effective forces in a large set of hadronic channels, mesonic and baryonic ones. Recent progress in understanding gauge topology at finite temperatures is related with the so called {em instanton-dyons}, the constituents of the instantons. Some of them, called $L$-dyons, possess the anti-periodic fermionic zero modes, and thus form a new version of the t Hooft effective Lagrangian. This paper is our first study of a wide set of hadronic correlation function. We found that, at the lowest temperatures at which this approach is expected to be applicable, those may be well compatible with what is known about them based on phenomenological and lattice studies, provided $L$ and $M$ type dyons are strongly correlated.
This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 and 128 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density.
Confinement remains one the most interesting and challenging nonperturbative phenomenon in non-Abelian gauge theories. Recent semiclassical (for SU(2)) and lattice (for QCD) studies have suggested that confinement arises from interactions of statistical ensembles of instanton-dyons with the Polyakov loop. In this work, we extend studies of semiclassical ensemble of dyons to the $SU(3)$ Yang-Mills theory. We find that such interactions do generate the expected first-order deconfinement phase transition. The properties of the ensemble, including correlations and topological susceptibility, are studied over a range of temperatures above and below $T_c$. Additionally, the dyon ensemble is studied in the Yang-Mills theory containing an extra trace-deformation term. It is shown that such a term can cause the theory to remain confined and even retain the same topological observables at high temperatures.
Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations of the ensemble of interacting dyons for the SU(2) pure gauge theory. Unlike previous studies, we focus on back reaction on the holonomy and the issue of confinement. We calculate the free energy as a function of the holonomy and the dyon densities, using standard Metropolis Monte Carlo and integration over parameter methods. We observe that as the temperature decreases and the dyon density grows, its minimum indeed moves from small holonomy to the value corresponding to confinement. We then report various parameters of the self-consistent ensembles as a function of temperature, and investigate the role of inter-particle correlations.
Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological constituents of the instantons at nonzero temperature and nonzero expectation value of $A_4$. While the interaction between instanton-dyons has been calculated to one-loop order by a number of authors, that for dyon-antidyon pairs remains unknown even at the classical level. In this work we are filling this gap, by solving the gradient flow equation on a 3d lattice. We start with two well separated objects. We find that, after initial rapid relaxation, the configurations follow streamline set of configurations, which is basically independent on the initial configurations used. In striking difference to instanton-antiinstanton streamlines, in this case it ends at a quasi-stationary configuration, with an abrupt drop to perturbative fields. We parameterize the action of the streamline configurations, which is to be used in future many-body calculations.
We point out a problem of the phenomenological definition of the valence partons as the difference between the partons and antipartons in the context of the NNLO evolution equations. After demonstrating that the classification of the parton degrees of freedom (PDF) of the parton distribution functions (PDFs) are the same in the QCD path-intergral formulations of the hadronic tensor and the quasi-PDF with LaMET, we resolve the problem by showing that the proper definition of the valence should be in terms of those in the connected insertions only. We also prove that the strange partons appear as the disconnected sea in the nucleon.