No Arabic abstract
We revisit the computation of instanton effects to various correlation functions in ${cal N}=4$ SYM and clarify a controversy existing in the literature regarding their consistency with the OPE and conformal symmetry. To check these properties, we examine the conformal partial wave decomposition of four-point correlators involving combinations of half-BPS and Konishi operators and isolate the contribution from the conformal primary scalar operators of twist four. We demonstrate that the leading instanton correction to this contribution is indeed consistent with conformal symmetry and compute the corresponding corrections to the OPE coefficients and the scaling dimensions of such twist-four operators. Our analysis justifies the regularization procedure used to compute ultraviolet divergent instanton contribution to correlation functions involving unprotected operators.
We investigate the Operator Product Expansion (OPE) on the lattice by directly measuring the product <Jmu Jnu> (where J is the vector current) and comparing it with the expectation values of bilinear operators. This will determine the Wilson coefficients in the OPE from lattice data, and so give an alternative to the conventional methods of renormalising lattice structure function calculations. It could also give us access to higher twist quantities such as the longitudinal structure function F_L = F_2 - 2 x F_1. We use overlap fermions because of their improved chiral properties, which reduces the number of possible operator mixing coefficients.
We consider correlation functions of operators and the operator product expansion in two-dimensional quantum gravity. First we introduce correlation functions with geodesic distances between operators kept fixed. Next by making two of the operators closer, we examine if there exists an analog of the operator product expansion in ordinary field theories. Our results suggest that the operator product expansion holds in quantum gravity as well, though special care should be taken regarding the physical meaning of fixing geodesic distances on a fluctuating geometry.
Local terms in the Operator Product Expansion in Superconformal Theories with extended supersymmetry are identified. Assuming a factorized structure for these terms their contributions are discussed.
We present first results for Wilson coefficients of operators up to first order in the covariant derivatives for the case of Wilson fermions. They are derived from the off-shell Compton scattering amplitude $mathcal{W}_{mu u}(a,p,q)$ of massless quarks with momentum $p$. The Wilson coefficients are classified according to the transformation of the corresponding operators under the hypercubic group H(4). We give selected examples for a special choice of the momentum transfer $q$. All Wilson coefficients are given in closed analytic form and in an expansion in powers of $a$ up to first corrections.
We show how to construct embedding space three-point functions for operators in arbitrary Lorentz representations by employing the formalism developed in arXiv:1905.00036 and arXiv:1905.00434. We study tensor structures that intertwine the operators with the derivatives in the OPE and examine properties of OPE coefficients under permutations of operators. Several examples are worked out in detail. We point out that the group theoretic objects used in this work can be applied directly to construct three-point functions without any reference to the OPE.