Do you want to publish a course? Click here

The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets

97   0   0.0 ( 0 )
 Added by Benjamin Fulton
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey (CKS) to study the size distribution of 2025 $textit{Kepler}$ planets in fine detail. We detect a factor of $geq$2 deficit in the occurrence rate distribution at 1.5-2.0 R$_{oplus}$. This gap splits the population of close-in ($P$ < 100 d) small planets into two size regimes: R$_P$ < 1.5 R$_{oplus}$ and R$_P$ = 2.0-3.0 R$_{oplus}$, with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0 R$_{oplus}$ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5 R$_{oplus}$ or smaller with varying amounts of low-density gas that determine their total sizes.



rate research

Read More

Probing the connection between a stars metallicity and the presence and properties of any associated planets offers an observational link between conditions during the epoch of planet formation and mature planetary systems. We explore this connection by analyzing the metallicities of Kepler target stars and the subset of stars found to host transiting planets. After correcting for survey incompleteness, we measure planet occurrence: the number of planets per 100 stars with a given metallicity $M$. Planet occurrence correlates with metallicity for some, but not all, planet sizes and orbital periods. For warm super-Earths having $P = 10-100$ days and $R_P = 1.0-1.7~R_E$, planet occurrence is nearly constant over metallicities spanning $-$0.4 dex to +0.4 dex. We find 20 warm super-Earths per 100 stars, regardless of metallicity. In contrast, the occurrence of warm sub-Neptunes ($R_P = 1.7-4.0~R_E$) doubles over that same metallicity interval, from 20 to 40 planets per 100 stars. We model the distribution of planets as $d f propto 10^{beta M} d M$, where $beta$ characterizes the strength of any metallicity correlation. This correlation steepens with decreasing orbital period and increasing planet size. For warm super-Earths $beta = -0.3^{+0.2}_{-0.2}$, while for hot Jupiters $beta = +3.4^{+0.9}_{-0.8}$. High metallicities in protoplanetary disks may increase the mass of the largest rocky cores or the speed at which they are assembled, enhancing the production of planets larger than 1.7 $R_E$. The association between high metallicity and short-period planets may reflect disk density profiles that facilitate the inward migration of solids or higher rates of planet-planet scattering.
We have established precise planet radii, semimajor axes, incident stellar fluxes, and stellar masses for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios smaller than $1.2$, regardless of planet size. Using empirical mass-radius relationships, we estimate the mutual Hill separations of planet pairs. We find that $93%$ of the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of $sim20$ mutual Hill radii is most common. We also find that when comparing planet sizes, the outer planet is larger in $65 pm 0.4%$ of cases, and the typical ratio of the outer to inner planet size is positively correlated with the temperature difference between the planets. This could be the result of photo-evaporation.
We used high-precision radial velocity measurements of FGKM stars to determine the occurrence of giant planets as a function of orbital separation spanning 0.03-30 au. Giant planets are more prevalent at orbital distances of 1-10 au compared to orbits interior or exterior of this range. The increase in planet occurrence at $sim$1 au by a factor of $sim$4 is highly statistically significant. A fall-off in giant planet occurrence at larger orbital distances is favored over models with flat or increasing occurrence. We measure $14.1^{+2.0}_{-1.8}$ giant planets per 100 stars with semi-major axes of 2-8 au and $8.9^{+3.0}_{-2.4}$ giant planets per 100 stars in the range 8-32 au, a decrease in giant planet occurrence with increasing orbital separation that is significant at the $sim$2$sigma$ level. We find that the occurrence rate of sub-Jovian planets (0.1-1 Jupiter masses) is also enhanced for 1-10 au orbits. This suggests that lower mass planets may share the formation or migration mechanisms that drive the increased prevalence near the water-ice line for their Jovian counterparts. Our measurements of cold gas giant occurrence are consistent with the latest results from direct imaging surveys and gravitational lensing surveys despite different stellar samples. We corroborate previous findings that giant planet occurrence increases with stellar mass and metallicity.
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
The California-Kepler Survey (CKS) catalog contains precise stellar and planetary properties for the Kepler planet candidates, including systems with multiple detected transiting planets (multis) and systems with just one detected transiting planet (singles, although additional planets could exist). We compared the stellar and planetary properties of the multis and singles in a homogenous subset of the full CKS-Gaia catalog. We found that sub-Neptune sized singles and multis do not differ in their stellar properties or planet radii. In particular: (1.) The distributions of stellar properties $M_star$, [Fe/H], and $vmathrm{sin}i$ for the Kepler sub Neptune-sized singles and multis are statistically indistinguishable. (2.) The radius distributions of the sub-Neptune sized singles and multis with $P > 3$ days are indistinguishable, and both have a valley at $sim1.8~R_oplus$. However, there are significantly more detected short-period ($P < 3$ days), sub-Neptune sized singles than multis. The similarity of the host star properties, planet radii, and radius valley for singles and multis suggests a common origin. The similar radius valley, which is likely sculpted by photo-evaporation from the host star within the first 100 Myr, suggests that planets in both singles and multis spend much of the first 100 Myr near their present, close-in locations. One explanation that is consistent with the similar fundamental properties of singles and multis is that many of the singles are members of multi-planet systems that underwent planet-planet scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا