No Arabic abstract
Besides having unique electronic properties, graphene is claimed to be the strongest material in nature. In the press release of the Nobel committee it is claimed that a hammock made of a squared meter of one-atom thick graphene could sustain the wight of a 4 kg cat. More practically important are applications of graphene like scaffolds and sensors which are crucially dependent on the mechanical strength. Meter-sized graphene is even being considered for the lightsails in the starshot project to reach the star alpha centaury. The predicted strength of graphene is based on its very large Young modulus which is, per atomic layer, much larger than that of steel. This reasoning however would apply to conventional thin plates but does not take into account the peculiar properties of graphene as a thermally fluctuating crystalline membrane. It was shown recently both experimentally and theoretically that thermal fluctuations lead to a dramatic reduction of the Young modulus and increase of the bending rigidity for micron-sized graphene samples in comparison with atomic scale values. This makes the use of the standard Foppl-von Karman elasticity (FvK) theory for thin plates not directly applicable to graphene and other single atomic layer membranes. This fact is important because the current interpretation of experimental results is based on the FvK theory. In particular, we show that the FvK-derived Schwerin equation, routinely used to derive the Young modulus from indentation experiments has to be essentially modified for graphene at room temperature and for micron sized samples. Based on scaling analysis and atomistic simulation we investigate the mechanics of graphene under transverse load up to breaking. We determine the limits of applicability of the FvK theory and provide quantitative estimates for the different regimes.
The interaction of graphene with neighboring materials and structures plays an important role in its behavior, both scientifically and technologically. The interactions are complicated due to the interplay between surface forces and possibly nonlinear elastic behavior. Here we review recent experimental and theoretical advances in the understanding of graphene adhesion. We organize our discussion into experimental and theoretical efforts directed toward: graphene conformation to a substrate, determination of adhesion energy, and applications where graphene adhesion plays an important role. We conclude with a brief prospectus outlining open issues.
The complex interplay between the various attractive and repulsive forces that mediate between biological membranes governs an astounding array of biological functions: cell adhesion, membrane fusion, self-assembly, binding-unbinding transition among others. In this work, the entropic repulsive force between membranes---which originates due to thermally excited fluctuations---is critically reexamined both analytically and through systematic Monte Carlo simulations. A recent work by Freund cite {Freund13} has questioned the validity of a well-accepted result derived by Helfrich cite{Helfrich78}. We find that, in agreement with Freund, for small inter-membrane separations ($d$), the entropic pressure scales as $psim 1/d $, in contrast to Helfrichs result: $psim 1/d^3$. For intermediate separations, our calculations agree with that of Helfrich and finally, for large inter-membrane separations, we observe an exponentially decaying behavior.
We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by in-plane nematic order. Such state is characterized by a vanishing elastic modulus for simple shear and soft transverse phonons. At harmonic level, in-plane orientational (nematic) order is stable to thermal fluctuations, that lead to short-range in-plane translational (phonon) correlations. To treat thermal fluctuations and relevant elastic nonlinearities, we introduce two generalizations of two-dimensional membranes in a three dimensional space to arbitrary D-dimensional membranes embedded in a d-dimensional space, and analyze their anomalous elasticities in an expansion about D=4. We find a new stable fixed point, that controls long-scale properties of nematic elastomer membranes. It is characterized by singular in-plane elastic moduli that vanish as a power-law eta_lambda=4-D of a relevant inverse length scale (e.g., wavevector) and a finite bending rigidity. Our predictions are asymptotically exact near 4 dimensions.
We investigate the thermodynamic properties and the lattice stability of two-dimensional crystalline membranes, such as graphene and related compounds, in the low temperature quantum regime $Trightarrow0$. A key role is played by the anharmonic coupling between in-plane and out-of plane lattice modes that, in the quantum limit, has very different consequences than in the classical regime. The role of retardation, namely of the frequency dependence, in the effective anharmonic interactions turns out to be crucial in the quantum regime. We identify a crossover temperature, $T^{*}$, between classical and quantum regimes, which is $sim 70 - 90$ K for graphene. Below $T^{*}$, the heat capacity and thermal expansion coefficient decrease as power laws with decreasing temperature, tending to zero for $Trightarrow0$ as required by the third law of thermodynamics.
The dynamics of suspended two-dimensional (2D) materials has received increasing attention during the last decade, yielding new techniques to study and interpret the physics that governs the motion of atomically thin layers. This has led to insights into the role of thermodynamic and nonlinear effects as well as the mechanisms that govern dissipation and stiffness in these resonators. In this review, we present the current state-of-the-art in the experimental study of the dynamics of 2D membranes. The focus will be both on the experimental measurement techniques and on the interpretation of the physical phenomena exhibited by atomically thin membranes in the linear and nonlinear regimes. We will show that resonant 2D membranes have emerged both as sensitive probes of condensed matter physics in ultrathin layers, and as sensitive elements to monitor small external forces or other changes in the environment. New directions for utilizing suspended 2D membranes for material characterization, thermal transport, and gas interactions will be discussed and we conclude by outlining the challenges and opportunities in this upcoming field.