No Arabic abstract
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic Heisenberg model on a stacked honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures, the thermodynamic quantities (two-spin correlation functions, internal energy, magnetic susceptibility, staggered magnetization, Neel temperature, correlation length) and the spin-excitation spectrum are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. The N{e}el temperature is calculated for arbitrary interlayer couplings. Our results are in a good agreement with numerical computations for finite clusters and with available experimental data on the beta-Cu2V2O2 compound.
We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility in the spin-1/2 antiferromagnetic t-J Heisenberg model on the honeycomb lattice. Employing a generalized mean-field approximation for arbitrary temperatures and hole dopings, the electronic spectrum of excitations, the spin-excitation spectrum and thermodynamic quantities (two-spin correlation functions, staggered magnetization, magnetic susceptibility, correlation length) are calculated by solving a coupled system of self-consistency equations for the correlation functions. The temperature and doping dependence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order. Our results on the doping dependencies of the magnetization and susceptibility are analyzed in comparison with previous results for the t_J model on the square lattice.
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random phase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
Searching for spin liquids on the honeycomb J1-J2 Heisenberg model has been attracting great attention in the past decade. In this Paper we investigate the topological properties of the J1-J2 Heisenberg model by introducing nearest-neighbour and next-nearest-neighbour bond parameters. We find that there exist two topologically different phases in the spin disordered regime 0.2<J2/J1<0.5: for J2/J1<0.32, the system is a zero-flux spin liquid which is topological trivial and gapless; for J2/J1>0.32, it is a pi-flux chiral spin liquid, which is topological nontrivial and gapped. These results suggest that there exist two topologically different spin disorder phases in honeycomb J1-J2 Heisenberg model.
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and second-neighbor ($J_2$) interactions ($0.0 leq J_2/J_1 leq 0.5$) by means of density matrix renormalization group (DMRG). In the parameter regime $J_2/J_1 lesssim 0.27$, the system sustains a N{e}el antiferromagnetic phase. At the large $J_2$ side $J_2/J_1 gtrsim 0.32$, a stripe antiferromagnetic phase is found. Between the two magnetic ordered phases $0.27 lesssim J_2/J_1 lesssim 0.32$, we find a textit{non-magnetic} intermediate region with a plaquette valence-bond order. Although our calculations are limited within $6$ unit-cell width on cylinder, we present evidence that this plaquette state could be a strong candidate for this non-magnetic region in the thermodynamic limit. We also briefly discuss the nature of the quantum phase transitions in the system. We gain further insight of the non-magnetic phases in the spin-$1$ system by comparing its phase diagram with the spin-$1/2$ system.
Recent inelastic neutron scattering experiments in CeIn$_{3}$ and CePd$_{2}$Si$_{2}$ single crystals measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong competition between the Ruderman-Kittel-Kasuya-Yosida(RKKY) interaction and Kondo effect is evidenced by their nearly equal Neel and Kondo temperatures. Our aim is to show how magnons such as measured in the antiferromagnetic phase of these Ce compounds, can be described with a microscopic Heisenberg-Kondo model introduced by J.R.Iglesias, C.Lacroix and B.Coqblin, used before for studies of the non-magnetic phase. The model includes the correlated Ce-$4 f$ electrons hybridized with the conduction band, where we also allow for correlations, and we consider competing RKKY (Heisenberg-like $J_{H} $) and Kondo ($J_{K}$) antiferromagnetic couplings. Carrying on a series of unitary transformations, we perturbatively derive a second-order effective Hamiltonian which, projected onto the antiferromagnetic electron ground state, describes the spin wave excitations, renormalized by their interaction with correlated itinerant electrons. We numerically study how the different parameters of the model influence the renormalization of the magnons, yielding useful information for the analysis of inelastic neutron scattering experiments in antiferromagnetic heavy fermion compounds. We also compare our results with the available experimental data, finding good agreement with the spin wave measurements in cubic CeIn$_3$.