No Arabic abstract
We study the ground-state phase diagram of two-dimensional two-component (or pseudospin-1/2) Bose gases in a high synthetic magnetic field in the space of the total filling factor and the ratio of the intercomponent coupling $g_{uparrowdownarrow}$ to the intracomponent one $g>0$. Using exact diagonalization, we find that when the intercomponent coupling is attractive ($g_{uparrowdownarrow}<0$), the product states of a pair of nearly uncorrelated quantum Hall states are remarkably robust and persist even when $|g_{uparrowdownarrow}|$ is close to $g$. This contrasts with the case of an intercomponent repulsion, where a variety of spin-singlet quantum Hall states with high intercomponent entanglement emerge for $g_{uparrowdownarrow}approx g$. We interpret this marked dependence on the sign of $g_{uparrowdownarrow}$ in light of pseudopotentials on a sphere, and also explain recent numerical results in two-component Bose gases in mutually antiparallel magnetic fields where a qualitatively opposite dependence on the sign of $g_{uparrowdownarrow}$ is found. Our results thus unveil an intriguing connection between multicomponent quantum Hall systems and quantum spin Hall systems in minimal setups.
We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion relation in the presence of an intercomponent tunneling (a Rabi coupling) and a gapped dispersion relation in its absence. These spectral features are associated with the emergence of long-range interactions in terms of the superfluid velocity and the particle density in the entanglement Hamiltonian. Our results demonstrate that unusual long-range interactions can be emulated in a subsystem of multicomponent BECs that have only short-range interactions. We also find that for a finite Rabi coupling the entanglement entropy exhibits a volume-law scaling with subleading logarithmic corrections originating from the Nambu-Goldstone mode and the symmetry restoration for a finite volume.
We study binary Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. Within the mean-field theory, the two types of fields have been shown to give the same vortex-lattice phase diagram. We develop an improved effective field theory to study properties of collective modes and ground-state intercomponent entanglement. Here, we point out the importance of introducing renormalized coupling constants for coarse-grained densities. We show that the low-energy excitation spectra for the two types of fields are related to each other by suitable rescaling using the renormalized constants. By calculating the entanglement entropy, we find that for an intercomponent repulsion (attraction), the two components are more strongly entangled in the case of parallel (antiparallel) fields, in qualitative agreement with recent studies for a quantum (spin) Hall regime. We also find that the entanglement spectrum exhibits an anomalous square-root dispersion relation, which leads to a subleading logarithmic term in the entanglement entropy. All of these are confirmed by numerical calculations based on the Bogoliubov theory with the lowest-Landau-level approximation. Finally, we investigate the effects of quantum fluctuations on the phase diagrams by calculating the correction to the ground-state energy due to zero-point fluctuations in the Bogoliubov theory. We find that the boundaries between rhombic-, square-, and rectangular-lattice phases shift appreciably with a decrease in the filling factor.
We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which lead to the formation of multimer (multi-particle bound-states) as the dominant order parameter. Luttinger liquid theory supports a mode-locking mechanism in which mass (or velocity) asymmetry is identified as the key ingredient to stabilize such states. While the scenario is valid both in the continuum and on a lattice, the effects of umklapp terms relevant for densities commensurate with the lattice spacing are also mentioned. These ideas are illustrated and confronted with the physics of the asymmetric (mass-imbalanced) fermionic Hubbard model with attractive interactions and densities such that a trimer phase can be stabilized. Phase diagrams are computed using density-matrix renormalization group techniques, showing the important role of the total density in achieving the novel phase. The effective physics of the trimer gas is as well studied. Lastly, the effect of a parabolic confinement and the emergence of a crystal phase of trimers are briefly addressed. This model has connections with the physics of imbalanced two-component fermionic gases and Bose-Fermi mixtures as the latter gives a good phenomenological description of the numerics in the strong-coupling regime.
We discuss the mean-field theories obtained from the leading order in a large-$N$ approximation for one- and two- component dilute Bose gases. For a one-component Bose gas this approximation has the following properties: the Bose-Einstein condensation (BEC) phase transition is second order but the critical temperature $T_c$ is not shifted from the non-interacting gas value $T_0$. The spectrum of excitations in the BEC phase resembles the Bogoliubov dispersion with the usual coupling constant replaced by the running coupling constant which depends on both temperature and momentum. We then study two-component Bose gases with both inter- and intra- species interactions and focus on the stability of the mixture state above $T_c$. Our mean-field approximation predicts an instability from the mixture state to a phase-separated state when the ratio of the inter-species interaction strength to the intra-species interaction strength (assuming equal strength for both species) exceeds a critical value. At high temperature this is a structural transition and the global translational symmetry is broken. Our work complements previous studies on the instability of the mixture phase in the presence of BEC.
We consider the non-equilibrium dynamics of two-component one dimensional quantum gases in the limit of extreme population imbalance where the minority species has but a single particle. We consider the situation where the gas is prepared in a state with a single spatially localized exciton: the single particle of the minority species is spatially localized while the density of the majority species in the vicinity of the minority particle sees a depression. Remarkably, we are able to consider cases where the gas contains on the order of $N=100$ particles, comparable to that studied in experiments on cold atomic gases. We are able to do by exploiting the integrability of the gas together with the observation that the excitonic state can be constructed through a simple superposition of exact eigenstates of the gas. The number of states in this superposition, rather than being exponentially large in the number of particles, scales linearly with $N$. We study the evolution of such spatially localized states in both strongly interacting Bose and Fermi gases. The behavior of the light cones when the interaction strength and density of the gas is varied can be understood from exact results for the spin excitation spectrum in these systems. We argue that the light cone in both cases exhibits scaling collapse. However unique to the Bose gas, we show that the presence of gapped finite-momentum roton-like excitations provide the Bose gas dynamics with secondary light cones.