Do you want to publish a course? Click here

Light cone dynamics in excitonic states of two-component Bose and Fermi gases

66   0   0.0 ( 0 )
 Added by Neil Robinson
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the non-equilibrium dynamics of two-component one dimensional quantum gases in the limit of extreme population imbalance where the minority species has but a single particle. We consider the situation where the gas is prepared in a state with a single spatially localized exciton: the single particle of the minority species is spatially localized while the density of the majority species in the vicinity of the minority particle sees a depression. Remarkably, we are able to consider cases where the gas contains on the order of $N=100$ particles, comparable to that studied in experiments on cold atomic gases. We are able to do by exploiting the integrability of the gas together with the observation that the excitonic state can be constructed through a simple superposition of exact eigenstates of the gas. The number of states in this superposition, rather than being exponentially large in the number of particles, scales linearly with $N$. We study the evolution of such spatially localized states in both strongly interacting Bose and Fermi gases. The behavior of the light cones when the interaction strength and density of the gas is varied can be understood from exact results for the spin excitation spectrum in these systems. We argue that the light cone in both cases exhibits scaling collapse. However unique to the Bose gas, we show that the presence of gapped finite-momentum roton-like excitations provide the Bose gas dynamics with secondary light cones.



rate research

Read More

We study a one-dimensional two-component atomic Fermi gas with an infinite intercomponent contact repulsion. It is found that adding an attractive resonant odd-wave interaction breaking the rotational symmetry one can make the ground state ferromagnetic. A promising system for the observation of this itinerant ferromagnetic state is a 1D gas of $^{40}$K atoms, where 3D $s$-wave and $p$-wave Feshbach resonances are very close to each other and the 1D confinement significantly reduces the inelastic decay.
124 - Chih-Chun Chien , Fred Cooper , 2012
We discuss the mean-field theories obtained from the leading order in a large-$N$ approximation for one- and two- component dilute Bose gases. For a one-component Bose gas this approximation has the following properties: the Bose-Einstein condensation (BEC) phase transition is second order but the critical temperature $T_c$ is not shifted from the non-interacting gas value $T_0$. The spectrum of excitations in the BEC phase resembles the Bogoliubov dispersion with the usual coupling constant replaced by the running coupling constant which depends on both temperature and momentum. We then study two-component Bose gases with both inter- and intra- species interactions and focus on the stability of the mixture state above $T_c$. Our mean-field approximation predicts an instability from the mixture state to a phase-separated state when the ratio of the inter-species interaction strength to the intra-species interaction strength (assuming equal strength for both species) exceeds a critical value. At high temperature this is a structural transition and the global translational symmetry is broken. Our work complements previous studies on the instability of the mixture phase in the presence of BEC.
We study the ground-state phase diagram of two-dimensional two-component (or pseudospin-1/2) Bose gases in a high synthetic magnetic field in the space of the total filling factor and the ratio of the intercomponent coupling $g_{uparrowdownarrow}$ to the intracomponent one $g>0$. Using exact diagonalization, we find that when the intercomponent coupling is attractive ($g_{uparrowdownarrow}<0$), the product states of a pair of nearly uncorrelated quantum Hall states are remarkably robust and persist even when $|g_{uparrowdownarrow}|$ is close to $g$. This contrasts with the case of an intercomponent repulsion, where a variety of spin-singlet quantum Hall states with high intercomponent entanglement emerge for $g_{uparrowdownarrow}approx g$. We interpret this marked dependence on the sign of $g_{uparrowdownarrow}$ in light of pseudopotentials on a sphere, and also explain recent numerical results in two-component Bose gases in mutually antiparallel magnetic fields where a qualitatively opposite dependence on the sign of $g_{uparrowdownarrow}$ is found. Our results thus unveil an intriguing connection between multicomponent quantum Hall systems and quantum spin Hall systems in minimal setups.
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter, based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible regime, with collisions becoming only important in the long time evolution.
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا