Do you want to publish a course? Click here

Production of exotic composite quarks at the LHC

87   0   0.0 ( 0 )
 Added by Orlando Panella
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider the production at the LHC of exotic composite quarks of charge $Q=+(5/3) e$ and $Q=-(4/3) e$. Such states are predicted in composite models of higher isospin multiplets ($I_W=1$ or $I_W=3/2$). Given their exotic charges (such as $5/3$), their decays proceed through the electroweak interactions. We compute decay widths and rates for resonant production of the exotic quarks at the LHC. Partly motivated by the recent observation of an excess by the CMS collaboration in the $e ot p_T jj$ final state signature we focus on $ pp to U^+ j to W^+ + j, j, to ell^+ ot p_T jj$ and then perform a fast simulation of the detector reconstruction based on DELPHES. We then scan the parameter space of the model ($m_*=Lambda$) and study the statistical significance of the signal against the relevant standard model background ($Wjj$ followed by leptonic decay of the $W$ gauge boson) providing the luminosity curves as function of $m_*$ for discovery at 3- and 5-$sigma$ level.



rate research

Read More

We study the single production of the fourth family quarks through the process pp--> QjX at the Large Hadron Collider (LHC). We have calculated the decay widths and branching ratios of the fourth family quarks (b and t) in the mass range 300-800 GeV. The cross sections of signal and background processes have been calculated in a Monte Carlo framework. It is shown that the LHC can discover single t and b quarks if the CKM matrix elements |V_{tq}|,|V_{qb}|>=0.01.
We study single production of exotic vectorlike $Y$ quark with electric charge $|Q_{Y}|=4/3$ and its subsequent decay at the High Luminosity LHC (HL-LHC). Most of the vector like quark (VLQ) decays have the electroweak $W$ bosons in the intermediate state. Besides their direct productions singly or pairs, the $W$-bosons are involved in decay chains as a result of the decay of a top quark which contributes to the background. This is particularly the case since vectorlike $Y$ quark, which is estimated to be produced with a high cross-section, can only decay via a $W$ boson and a down type quark ($d,s,b$). We calculate the cross sections of signal (for different couplings and mass values) and relevant Standard Model (SM) backgrounds. After a fast simulation of signal and background events, estimations of the sensitivity to the parameters (mass range 1000-2500 GeV for coupling value $kappa_{Y}=0.5$, and mass range 500-2000 GeV for coupling values $kappa_{Y}=0.3$ and $kappa_{Y}=0.15$) have been presented at the HL-LHC with center of mass energy $sqrt{s}=14$ TeV and integrated luminosity projections of 300 fb$^{-1}$, 1000 fb$^{-1}$ and 3000 fb$^{-1}$.
Heavy long-lived multi-charged leptons (MCLs) are predicted by various new physics models. These hypothetical MCLs can form bound states, due to their high electric charges and long life times. In this work, we propose a novel strategy of searching for MCLs through their bound state productions and decays. By utilizing LHC-8 TeV data in searching for resonances in the diphoton channel, we exclude the masses of isospin singlet heavy leptons with electric charge $|q|geq 6$ (in units of electron charge) lower than $sim$1.2 TeV, which are much stronger than the corresponding 8 TeV LHC bounds from analysing the high ionisation and the long time-of-flight of MCLs. By utilising the current 13 TeV LHC diphoton channel measurements the bound can further exclude MCL masses up to $sim$1.6 TeV for $|q|geq 6$. Also, we demonstrate that the conventional LHC limits from searching for MCLs produced via Drell-Yan processes can be enhanced by including the contribution of photon fusion processes.
The production of $W^+ W^-$ pair in hadron colliders was calculated up to loop corrections by some authors in the Electroweak standard model (SM) framework. This production was also calculated, at the tree level, in some extensions of the SM such as the vector singlet, the fermion mirror fermion and the vector doublet models by considering the contributions of new neutral gauge bosons and exotic fermions. The obtained results for $e^+ e^-$ and $pp$ collisions pointed out that the new physics contributions are quite important. This motivates us to calculate the production of a more massive charged gauge boson predicted by the ${SU (3)_C times SU (3)_L times U (1)_X}$ model (3-3-1 model). Thus, the aim of the present paper is to analyze the role played by of the extra gauge boson ${Z^prime}$ and of the exotic quarks, predicted in the minimal version of the 3-3-1 model, by considering the inclusive production of a pair of bileptons ($V^pm$) in the reaction $p + p longrightarrow V^+ + V^- + X$, at the Large Hadron Collider (LHC) energies. Our results show that the correct energy behavior of the elementary cross section follows from the balance between the contributions of the extra neutral gauge boson with those from the exotic quarks. The extra neutral gauge boson induces flavor-changing neutral currents (FCNC) at tree level, and we have introduced the ordinary quark mixing matrices for the model when the first family transforms differently to the other two with respect to $SU(3)_L$. We obtain a huge number of heavy bilepton pairs produced for two different values of the center of mass energy of the LHC.
The tree-level partonic angular distribution of Standard Model $Wgamma$ production possesses a feature known as the Radiation Amplitude Zero (RAZ) where destructive interference causes the cross section to vanish. At the proton level the exact cancellation disappears, however, one can find a dip in the central region of the angular distributions, here called the Radiation Valley (RV). In this paper, we show how the sensitivity for $W(ell u)gamma$ resonances can be significantly improved if one focuses on events in the RV region. Using this technique, we find that the LHC could probe a larger range of resonance masses, equivalent to increasing the luminosity by a factor of $2-3$ over conventional searches. The exact increase depends on the spin of the $Wgamma$ resonance and exactly how it couples to electroweak gauge bosons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا