No Arabic abstract
We study the single production of the fourth family quarks through the process pp--> QjX at the Large Hadron Collider (LHC). We have calculated the decay widths and branching ratios of the fourth family quarks (b and t) in the mass range 300-800 GeV. The cross sections of signal and background processes have been calculated in a Monte Carlo framework. It is shown that the LHC can discover single t and b quarks if the CKM matrix elements |V_{tq}|,|V_{qb}|>=0.01.
We study single production of exotic vectorlike $Y$ quark with electric charge $|Q_{Y}|=4/3$ and its subsequent decay at the High Luminosity LHC (HL-LHC). Most of the vector like quark (VLQ) decays have the electroweak $W$ bosons in the intermediate state. Besides their direct productions singly or pairs, the $W$-bosons are involved in decay chains as a result of the decay of a top quark which contributes to the background. This is particularly the case since vectorlike $Y$ quark, which is estimated to be produced with a high cross-section, can only decay via a $W$ boson and a down type quark ($d,s,b$). We calculate the cross sections of signal (for different couplings and mass values) and relevant Standard Model (SM) backgrounds. After a fast simulation of signal and background events, estimations of the sensitivity to the parameters (mass range 1000-2500 GeV for coupling value $kappa_{Y}=0.5$, and mass range 500-2000 GeV for coupling values $kappa_{Y}=0.3$ and $kappa_{Y}=0.15$) have been presented at the HL-LHC with center of mass energy $sqrt{s}=14$ TeV and integrated luminosity projections of 300 fb$^{-1}$, 1000 fb$^{-1}$ and 3000 fb$^{-1}$.
Family gauge boson production at the LHC is investigated according to a $U(3)$ family gauge model with twisted family number assignment. In the model we study, a family gauge boson with the lowest mass, $A_1^{ 1}$, interacts only with the first generation leptons and the third generation quarks. (The family numbers are assigned, for example, as $(e_1, e_2, e_3)= (e^-, mu^-, tau^-)$ and $(d_1, d_2, d_3)=(b, d, s) $[or $(d_1, d_2, d_3)=(b, s, d)$]). In the model, the family gauge coupling constant is fixed by relating to the electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of $A_1^{ 1}$ clearly confirm or rule out the model. We calculate the cross sections of inclusive $A_1^{ 1}$ production and $b bar{b} , (t bar{t})$ associated $A_1^{ 1}$ production at $sqrt{s} = 14~text{TeV}$ and $100~text{TeV}$. With the dielectron production cross section, we discuss the determination of diagonalizing matrix of quark mass matrix, $U_{u}$ and $U_{d}$, respectively.
We consider the production at the LHC of exotic composite quarks of charge $Q=+(5/3) e$ and $Q=-(4/3) e$. Such states are predicted in composite models of higher isospin multiplets ($I_W=1$ or $I_W=3/2$). Given their exotic charges (such as $5/3$), their decays proceed through the electroweak interactions. We compute decay widths and rates for resonant production of the exotic quarks at the LHC. Partly motivated by the recent observation of an excess by the CMS collaboration in the $e ot p_T jj$ final state signature we focus on $ pp to U^+ j to W^+ + j, j, to ell^+ ot p_T jj$ and then perform a fast simulation of the detector reconstruction based on DELPHES. We then scan the parameter space of the model ($m_*=Lambda$) and study the statistical significance of the signal against the relevant standard model background ($Wjj$ followed by leptonic decay of the $W$ gauge boson) providing the luminosity curves as function of $m_*$ for discovery at 3- and 5-$sigma$ level.
It is shown that if the fourth SM fermion family exists then the Higgs boson could be observed at the LHC with an integrated luminosity of few fb-1. The Higgs discovery potential for different channels is discussed in the presence of the fourth SM family.
Most limits on the fourth generation heavy top quark (the t) are based on the assumed dominance of t -> Wb, which is expected to be case in the minimal fourth generation framework with a single Higgs (the so called SM4). Here we show, within a variant of a Two Higgs Doublet Model with four generations of fermions, that, in general, a different t detection strategy is required if the physics that underlies the new heavy fermionic degrees of freedom goes beyond the naive SM4. We find that the recent CMS lower bounds: m_{t}< 450 GeV in the semi-leptonic channel pp -> tt -> l u qqbb and m_{t}< 557 GeV in the dilepton channel pp -> tt ->ll u u bb, that were obtained using the customary (SM4-driven) detection strategies, do not apply. In particular, we demonstrate that if the decay t -> ht dominates, then applying the standard CMS search tools leads to a considerably relaxed lower bound: m_{t} >~350 GeV. We, therefore, suggest an alternative search strategy that is more sensitive to beyond SM4 dynamics of the fourth generation fermions.