Do you want to publish a course? Click here

The ladder physics in the Spin Fermion model

54   0   0.0 ( 0 )
 Added by Alexei Tsvelik
 Publication date 2017
  fields Physics
and research's language is English
 Authors A. M. Tsvelik




Ask ChatGPT about the research

A link is established between the spin-fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence the SF model provides an adequate description of the pseudogap.



rate research

Read More

In the nested limit of the spin-fermion model for the cuprates, one-dimensional physics in the form of half-filled two-leg ladders emerges. We show that the renormalization group flow of the corresponding ladder is towards the d-Mott phase, a gapped spin-liquid with short-ranged d-wave pairing correlations, and reveals an intermediate SO(5)$times$SO(3) symmetry. We use the results of the renormalization group in combination with a memory-function approach to calculate the optical conductivity of the spin-fermion model in the high-frequency regime, where processes within the hot spot region dominate the transport. We argue that umklapp processes play a major role. For finite temperatures, we determine the resistivity in the zero-frequency (dc) limit. Our results show an approximate linear temperature dependence of the resistivity and a conductivity that follows a non-universal power law. A comparison to experimental data supports our assumption that the conductivity is dominated by the antinodal contribution above the pseudogap.
The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modelling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the complete phase diagram.
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $mathbf{k}_1=(0,0.57,0)$. A quasielastic signal is found, whose momentum-transfer dependence is compatible with fluctuations of magnetic moments $muparallelmathbf{a}$, with a sine-wave modulation of wavevector $mathbf{k}_1$ and in-phase moments on the nearest U atoms. Low dimensionality of the magnetic fluctuations, consequence of the ladder structure, is indicated by weak correlations along the direction $mathbf{c}$. These fluctuations saturate below the temperature $T_1^*simeq15$~K, in possible relation with anomalies observed in thermodynamic, electrical-transport and nuclear-magnetic-resonance measurements. The absence or weakness of ferromagnetic fluctuations, in our data collected at temperatures down to 2.1 K and energy transfers from 0.6 to 7.5 meV, is emphasized. These results constitute constraints for models of magnetically-mediated superconductivity in UTe$_2$.
407 - B. Koteswararao 2007
We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.
To establish the microscopic model of the compound BiCu$_2$PO$_6$ is a challenging task. Inelastic neutron scattering experiments showed that the dispersion of this material is non-degenerate suggesting the existence of anisotropic interactions. Here we present a quantitative description of the excitation spectrum for BiCu$_2$PO$_6$ on the one-particle level. The solution of the isotropic frustrated spin ladder by continuous unitary transformations is the starting point of our approach. Further couplings such as isotropic interladder couplings and anisotropic interactions are included on the mean-field level. Our aim is to establish a minimal model built on the symmetry allowed interactions and to find a set of parameters, which allow us to describe the low-energy part of the dispersion without assuming unrealistic couplings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا