No Arabic abstract
We investigate a class of aggregation-diffusion equations with strongly singular kernels and weak (fractional) dissipation in the presence of an incompressible flow. Without the flow the equations are supercritical in the sense that the tendency to concentrate dominates the strength of diffusion and solutions emanating from sufficiently localised initial data may explode in finite time. The main purpose of this paper is to show that under suitable spectral conditions on the flow, which guarantee good mixing properties, for any regular initial datum the solution to the corresponding advection-aggregation-diffusion equation is global if the prescribed flow is sufficiently fast. This paper can be seen as a partial extension of Kiselev and Xu (Arch. Rat. Mech. Anal. 222(2), 2016), and our arguments show in particular that the suppression mechanism for the classical 2D parabolic-elliptic Keller-Segel model devised by Kiselev and Xu also applies to the fractional Keller-Segel model (where $triangle$ is replaced by $-Lambda^gamma$) requiring only that $gamma>1$. In addition, we remove the restriction to dimension $d<4$.
We analyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the functional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these results are sharp for homogeneous functionals with entropies leading to degenerate diffusions while they are not sharp for fast diffusions. The particular relevant case of linear diffusion is totally clarified giving a sharp condition on the interaction potential under which the corresponding free energy functional has ground states or not.
This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fractional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x,t) which is a nonlinear function overning reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed.
We consider an evolution equation with the Caputo-Dzhrbashyan fractional derivative of order $alpha in (1,2)$ with respect to the time variable, and the second order uniformly elliptic operator with variable coefficients acting in spatial variables. This equation describes the propagation of stress pulses in a viscoelastic medium. Its properties are intermediate between those of parabolic and hyperbolic equations. In this paper, we construct and investigate a fundamental solution of the Cauchy problem, prove existence and uniqueness theorems for such equations.
We investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We examine the well-posedness issue and prove that the space-dependent variable order coefficient is uniquely determined among other coefficients of these equations, by the knowledge of a suitable time-sequence of partial Dirichlet-to-Neumann maps.
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite variance. We then show that for an appropriate time scale, the small mean free path limit gives rise to a fractional diffusion equation.