Do you want to publish a course? Click here

Cauchy Problem for Fractional Diffusion-Wave Equations with Variable Coefficients

549   0   0.0 ( 0 )
 Added by Anatoly Kochubei
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider an evolution equation with the Caputo-Dzhrbashyan fractional derivative of order $alpha in (1,2)$ with respect to the time variable, and the second order uniformly elliptic operator with variable coefficients acting in spatial variables. This equation describes the propagation of stress pulses in a viscoelastic medium. Its properties are intermediate between those of parabolic and hyperbolic equations. In this paper, we construct and investigate a fundamental solution of the Cauchy problem, prove existence and uniqueness theorems for such equations.



rate research

Read More

This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fractional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x,t) which is a nonlinear function overning reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed.
This paper is concerned with the inverse problem on determining an orbit of the moving source in a fractional diffusion(-wave) equations in a connected bounded domain of $mathbb R^d$ or in the whole space $mathbb R^d$. Based on a newly established fractional Duhamels principle, we derive a Lipschitz stability estimate in the case of a localized moving source by the observation data at $d$ interior points. The uniqueness for the general non-localized moving source is verified with additional data of more interior observations.
154 - Hongjie Dong , Yanze Liu 2021
This paper is a comprehensive study of $L_p$ estimates for time fractional wave equations of order $alpha in (1,2)$ in the whole space, a half space, or a cylindrical domain. We obtain weighted mixed-norm estimates and solvability of the equations in both non-divergence form and divergence form when the leading coefficients have small mean oscillation in small cylinders.
We investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We examine the well-posedness issue and prove that the space-dependent variable order coefficient is uniquely determined among other coefficients of these equations, by the knowledge of a suitable time-sequence of partial Dirichlet-to-Neumann maps.
71 - Mauro Bonafini 2020
We prove existence of weak solutions to the obstacle problem for semilinear wave equations (including the fractional case) by using a suitable approximating scheme in the spirit of minimizing movements. This extends the results in [9], where the linear case was treated. In addition, we deduce some compactness properties of concentration sets (e.g. moving interfaces) when dealing with singular limits of certain nonlinear wave equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا