Do you want to publish a course? Click here

Computational solutions of unified fractional reaction-diffusion equations with composite fractional time derivative

164   0   0.0 ( 0 )
 Added by Hans J. Haubold
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fractional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x,t) which is a nonlinear function overning reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed.



rate research

Read More

In this paper we investigate the solution of generalized distributed order diffusion equations with composite time fractional derivative by using the Fourier-Laplace transform method. We represent solutions in terms of infinite series in Fox $H$-functions. The fractional and second moments are derived by using Mittag-Leffler functions. We observe decelerating anomalous subdiffusion in case of two composite time fractional derivatives. Generalized uniformly distributed order diffusion equation, as a model for strong anomalous behavior, is analyzed by using Tauberian theorem. Some previously obtained results are special cases of those presented in this paper.
This paper deals with the solution of unified fractional reaction-diffusion systems. The results are obtained in compact and elegant forms in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. On account of the most general character of the derived results, numerous results on fractional reaction, fractional diffusion, and fractional reaction-diffusion problems scattered in the literature, including the recently derived results by the authors for reaction-diffusion models, follow as special cases.
109 - Mark Allen 2017
We prove uniqueness for weak solutions to abstract parabolic equations with the fractional Marchaud or Caputo time derivative. We consider weak solutions in time for divergence form equations when the fractional derivative is transferred to the test function.
521 - Anatoly N. Kochubei 2013
We consider an evolution equation with the Caputo-Dzhrbashyan fractional derivative of order $alpha in (1,2)$ with respect to the time variable, and the second order uniformly elliptic operator with variable coefficients acting in spatial variables. This equation describes the propagation of stress pulses in a viscoelastic medium. Its properties are intermediate between those of parabolic and hyperbolic equations. In this paper, we construct and investigate a fundamental solution of the Cauchy problem, prove existence and uniqueness theorems for such equations.
In this paper we investigate existence of solutions for the system: begin{equation*} left{ begin{array}{l} D^{alpha}_tu=textrm{div}(u abla p), D^{alpha}_tp=-(-Delta)^{s}p+u^{2}, end{array} right. end{equation*} in $mathbb{T}^3$ for $0< s leq 1$, and $0< alpha le 1$. The term $D^alpha_t u$ denotes the Caputo derivative, which models memory effects in time. The fractional Laplacian $(-Delta)^{s}$ represents the L{e}vy diffusion. We prove global existence of nonnegative weak solutions that satisfy a variational inequality. The proof uses several approximations steps, including an implicit Euler time discretization. We show that the proposed discrete Caputo derivative satisfies several important properties, including positivity preserving, convexity and rigorous convergence towards the continuous Caputo derivative. Most importantly, we give a strong compactness criteria for piecewise constant functions, in the spirit of Aubin-Lions theorem, based on bounds of the discrete Caputo derivative.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا